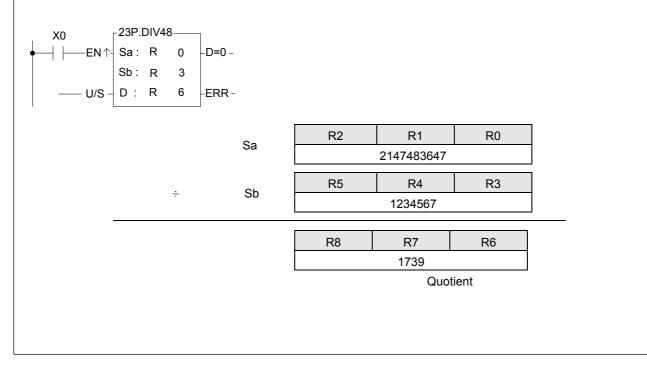
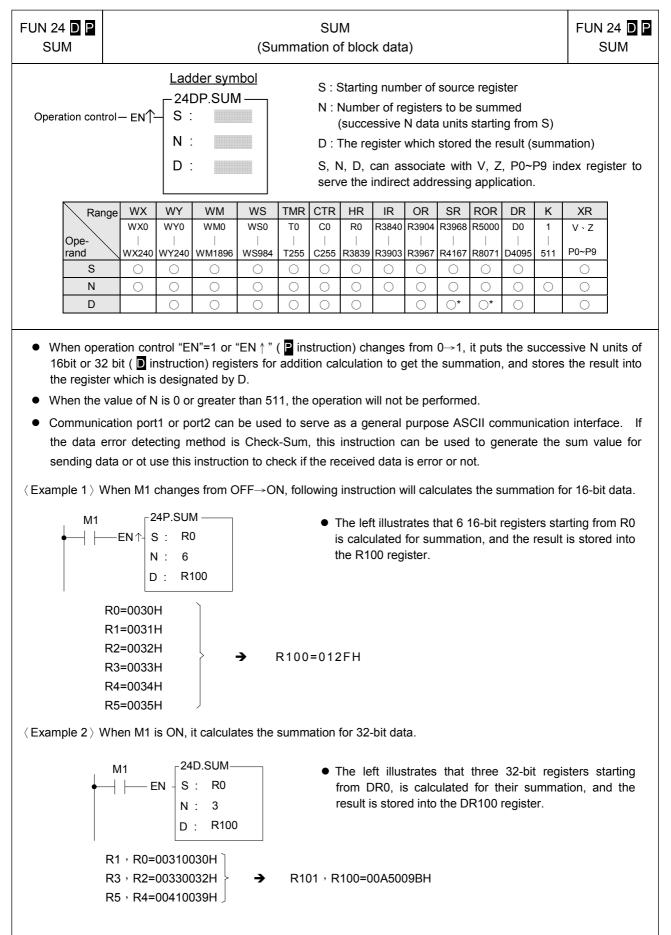
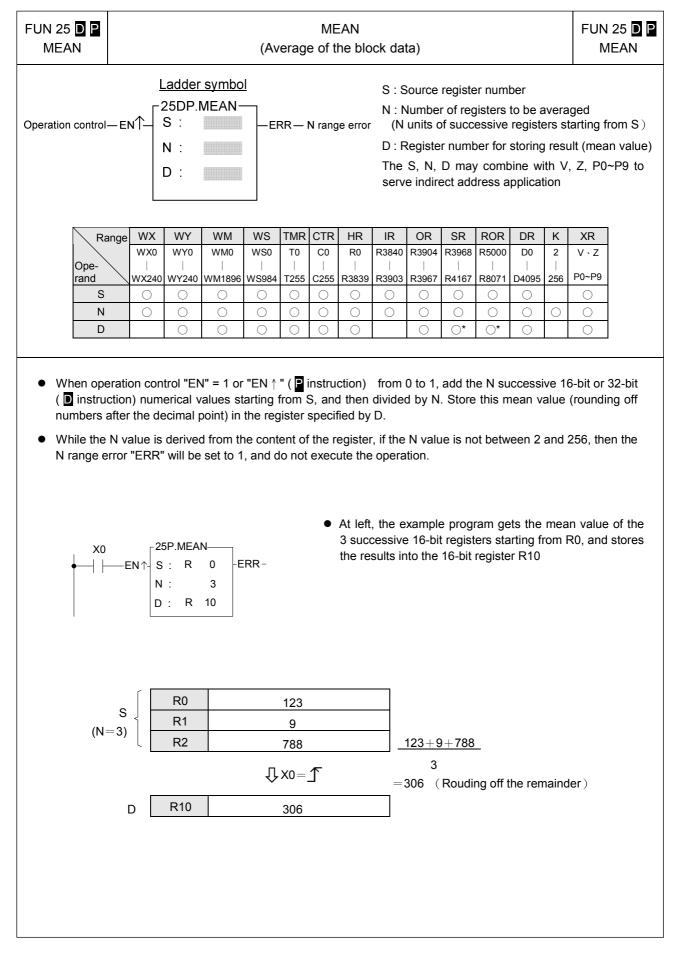

# Chapter 7 Advanced Function Instructions

| • | Flow control instructions1          | (FUN22)7-1                 |
|---|-------------------------------------|----------------------------|
| • | Arithmetical operation instructions | (FUN23~32)7-2 ~ 7-9        |
| • | Logical operation instructions      | (FUN35~36)7-10 ~ 7-13      |
| • | Comparison instruction              | (FUN37)7-14                |
| • | Data movement instructions1         | (FUN40~50)7-15 ~ 7-25      |
| • | Shifting / Rotating instructions    | (FUN51~54)7-26 ~ 7-29      |
| • | Code conversion instructions        | (FUN55~64) 7-30 ~ 7-46     |
| • | Flow control instructions2          | (FUN65~71) 7-47 ~ 7-54     |
| • | I/O instructions                    | (FUN74~86) 7-55 ~ 7-72     |
| • | Cumulative timer instructions       | (FUN87~89) 7-73 ~ 7-74     |
| • | Watchdog timer instructions         | (FUN90~91) 7-75 ~ 7-76     |
| • | High speed counting / timing        | (FUN92~93) 7-77 ~ 7-78     |
| • | Report printing instructions        | (FUN94)7-79 ~ 7-80         |
| • | Slow up / Slow down instructions    | (FUN95)7-81 ~ 7-82         |
| • | Table instructions                  | (FUN100~114)7-84 ~ 7-101   |
| • | Matrix instructions                 | (FUN120~130) 7-103 ~ 7-113 |
| • | NC positioning instructions         | (FUN140~143)7-114 ~ 7-119  |
| • | Enable / Disable instructions       | (FUN145~146) 7-120 ~ 7-121 |
| • | Communication instructions          | (FUN150~151) 7-122 ~ 7-123 |
| • | Data movement instructions2         | (FUN160)7-124 ~ 7-125      |
|   |                                     |                            |

• Floating Point Number operation instructions(FUN200~213)......7-126 ~ 7-140

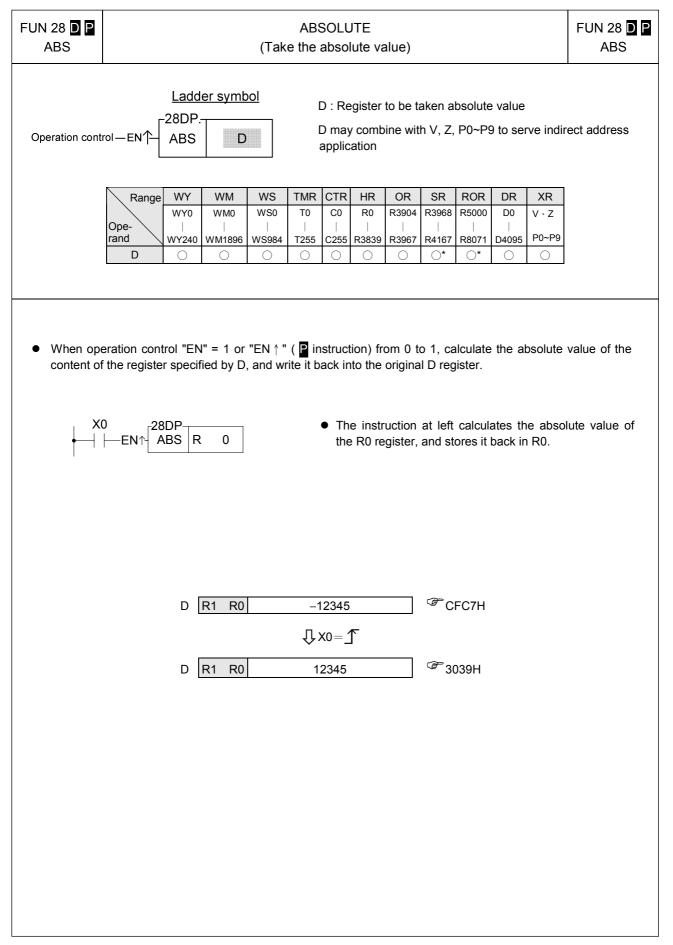




| FUN 23 P<br>DIV48               |                                |                         | 4                | 8-BIT      | DIVIS               | SION       |                  |                                |                                                                                                             | FUN 23 P<br>DIV48 |
|---------------------------------|--------------------------------|-------------------------|------------------|------------|---------------------|------------|------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------|
| Operation contro<br>Unsign/Sigr | I — EN∱– 23P.D<br>Sa ∶<br>Sb ∶ | <u>r symbol</u><br>IV48 |                  |            | otient =<br>sor = 0 |            | Sb:<br>D<br>Sa,  | Starting<br>Starting<br>result | g register of divider<br>g register of divisor<br>g register for storin<br>(quotient)<br>n combine V, Z, P0 | g the division    |
|                                 |                                | Range                   | HR               | OR         | SR                  | ROR        | DR               | XR                             |                                                                                                             |                   |
|                                 |                                | Ope-<br>rand            | R0<br> <br>R3839 |            | R3968<br> <br>R4167 |            | D0<br> <br>D4095 | V \ Z<br>P0~P9                 |                                                                                                             |                   |
|                                 |                                | Sa                      | 0                | $\bigcirc$ | 0                   | 0          | 0                | $\bigcirc$                     |                                                                                                             |                   |
|                                 |                                | Sb                      | 0                | $\bigcirc$ | $\bigcirc$          | $\bigcirc$ | 0                | $\bigcirc$                     |                                                                                                             |                   |
|                                 |                                | D                       | $\bigcirc$       | $\bigcirc$ | <b>O*</b>           | <b>O*</b>  | $\bigcirc$       | $\bigcirc$                     |                                                                                                             |                   |
|                                 |                                |                         |                  |            |                     |            |                  |                                |                                                                                                             |                   |

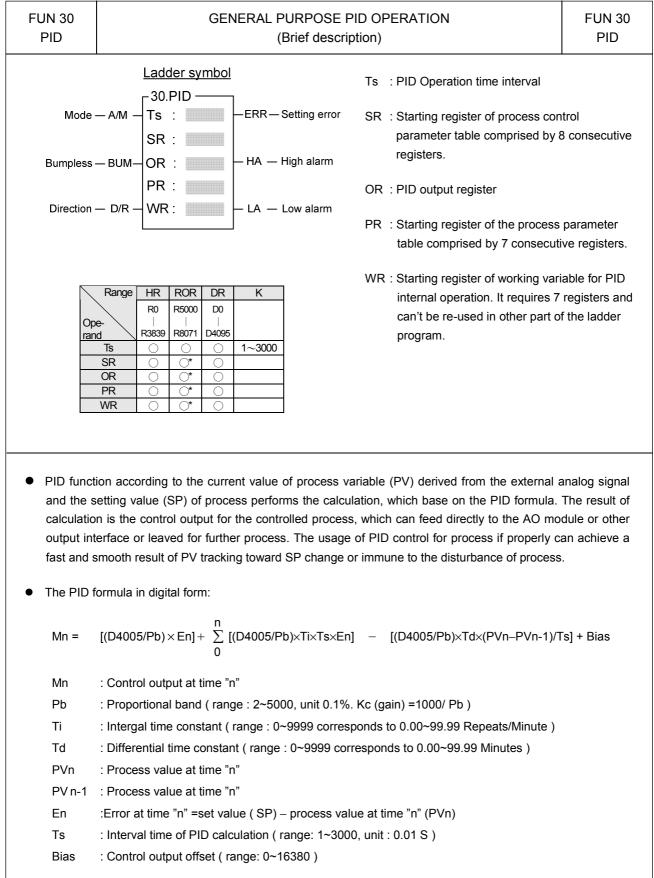

- When operation control "EN"=1 or "EN ↑" ( instruction) changes from 0→1, will perform the 48 bits division operation. Dividend and divisor are each formed by three consecutive registers starting by Sa and Sb respectively. If the result is zero, 'D=0' output will be set to 1. If divisor is zero then the 'ERR' will be set to 1 and the resultant register will keep unchanged.
- All operands involved in this function are all 48 bits, so Sa, Sb and D are all comprised by 3 consecutive registers.

#### Example: 48-bit division

In this example dividend formed by register R2, R1, R0 will be divided by divisor formed by register R5, R4, R3. The quotient will store in R8, R7, and R6.



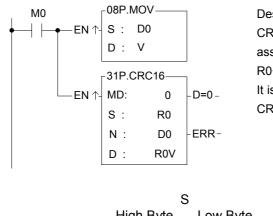



| FUN 26 D P<br>SQRT   |                    |              |                 |      | S     | QUAI    | RE RC   | оот                            |                            |                              |                  |                 |                    | FUN 20<br>SQI      |                  |
|----------------------|--------------------|--------------|-----------------|------|-------|---------|---------|--------------------------------|----------------------------|------------------------------|------------------|-----------------|--------------------|--------------------|------------------|
| Operation control    | —en∱-              | <u> </u>     |                 |      | -ERR- | — S ran | ge erro | D: <br><sup>vr</sup> (<br>S, [ | Registe<br>square<br>D may | er for s<br>e root v<br>comb | toring<br>value) | result<br>th V, | n squar<br>Z, P0~  | e root<br>P9 to s  | erve             |
| Range                | WX                 | WY           | WM              | WS   | TMR   | CTR     | HR      | IR                             | OR                         | SR                           | ROR              | DR              | К                  | XR                 | 1                |
| Trange               | WX0                | WY0          | WM0             | WS0  | то    | C0      | R0      | R3840                          | R3904                      | R3968                        |                  | D0              |                    | V . 7              |                  |
| Ope-                 |                    |              | 1               |      |       |         |         |                                |                            |                              |                  |                 | 16/32-b            | P0~P9              |                  |
| rand S               | 0                  | 0            | WM1896          | 0    | T255  | C255    | R3839   | R3903                          | R3967                      | 0                            | R8071            | 04095           | 0                  | 0                  | -                |
| D                    |                    | 0            | 0               | 0    | 0     | 0       | 0       |                                | 0                          | <u></u>                      | <u></u>          | 0               |                    | 0                  | -                |
| flag "ERR<br>X0<br>∳ | " will be<br>—EN↑- | -26DP<br>S : | .SQRT<br>483647 | -ERI |       |         | The     | instruc                        |                            |                              |                  |                 | square<br>result i | e root of<br>n R0. | <sup>:</sup> the |
|                      |                    |              | S               |      | К     |         | 2       | 147483                         | 3647                       |                              | ]                |                 |                    |                    |                  |
|                      |                    |              |                 |      |       |         |         | Ū X0=                          | - <b>1</b>                 |                              |                  |                 |                    |                    |                  |
|                      |                    |              | D               | R    | 1 R0  |         |         | 4634                           | 0                          |                              | 1                |                 |                    |                    |                  |
|                      |                    |              |                 |      |       |         | R1      |                                |                            | R0                           |                  |                 |                    |                    |                  |
|                      |                    |              |                 |      | √214  | 74836   |         | 46340.<br>unding               | <br>↑                      |                              |                  |                 |                    |                    |                  |

| FUN 27 D P<br>NEG | NEGATION<br>(Take the negative value)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FUN 27 D P<br>NEG |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Operation cont    | Ladder symbol       D : Register to be negated         D = Register to be negated       D may combine with V, Z, P0~P9 to serve ind application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | irect address     |
|                   | Range         WY         WM         WS         TMR         CTR         HR         OR         SR         ROR         DR         XR           WY0         WM0         WS0         T0         C0         R0         R3904         R3968         R5000         D0         V \ Z           Ope-<br>rand         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I |                   |
| the value         | eration control "EN" = 1 or "EN $\uparrow$ " ( p instruction) from 0 to 1, negate (ie. calculate 2's c of the content of the register specified by D, and store it back in the original D register.<br>e of the content of D is negative, then the negation operation will make it positive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | omplement)        |
| ×                 | 0 27P<br>→ EN↑ NEG R 0 • The instruction at left negates the value<br>register, and stores it back to R0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e of the R0       |
|                   | D R0 12345 ☞ 3039H<br>↓X0=ſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|                   | D R0 -12345 <sup>CFC7H</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |




| FUN 29 D P<br>EXT        | SIGN EXTENSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FUN 29 D P<br>EXT |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Operation cor            | Ladder symbol       D : Register to be taken sign extension         29P.       D may combine with V, Z, P0~P9 to serve indiapplication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rect address      |
|                          | Range         WY         WM         WS         TMR         CTR         HR         OR         SR         ROR         DR         XR           WY0         WM0         WS0         T0         C0         R0         R3904         R3968         R5000         D0         V \$\cdot Z\$           Ope-<br>rand         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |                   |
| bit numer<br>successiv   | eration control "EN" = 1 or "EN $\uparrow$ " ( p instruction) from 0 to 1, this instruction will sign e<br>ical value specified by D to 32-bit value and store it into the 32-bit register comprised<br>e words, D + 1 and D. (Both values are the same, only it was originally formated<br>value, and was then extended to be formated as a 32 bit numerical value.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l by the two      |
| register(<br>(+,-,*,/,CN | uction extent the numerical value of a 16-bit register into an equivalent numerical valu<br>for example 33FFH converts to 000033FFH), Its main function is for numerical<br>IP) which can take the 16 bit or 32 bit numerical values as operand. Before oper<br>should be adjusted to the same length for proper operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | operations        |
| ×0<br>↓   -              | <ul> <li>The instruction at left takes a 16 bit numer and extends it to an equivalent value in stores it into a 32 bit register (DR0=R1R0) and R1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32 bits, then     |
| D R1 R0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 12345           |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| D R1 R0                  | B31       R1       B16       B15       R0       B0         0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td>- 12345</td></t<>                      | - 12345           |
|                          | ension(16 bits) R0= CFC7H=-12345<br>sion(32 bits)R1R0=FFFFCFC7H=-12345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y the same        |



For detail description of this function, please refer chapter 20.

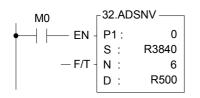
| FUN31 P<br>CRC16  |                |                         |          | C |          | ALCULATION<br>RC16)                                                                                                                                                                                                                                                                                                                                                                                                                                               | FUN31 P<br>CRC16            |
|-------------------|----------------|-------------------------|----------|---|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Executrion contro | Range HR<br>R0 | Adder :<br>1P.CR<br>D : | DR<br>D0 |   | =0<br>RR | <ul> <li>MD : 0, Lower byte of registers to be calcul<br/>CRC16</li> <li>: 1, Reserved</li> <li>S : Starting address of CRC16 calculation</li> <li>N : Length of CRC16 calculation (In Byte)</li> <li>D : The destination register to store the calculation (Register D stores the Upper Byte of CRC16,<br/>Register D + 1 stores the Lower Byte of CRC<br/>S, N, D may associate with V \ Z \ P0~P9 integer serve the indirect addressing application</li> </ul> | culation of<br>C16<br>CRC16 |

- When execution control "EN"=1 or "EN ↑" ( I instruction) changes from 0→1, it will start the CRC16 calculation from the lower byte of S and by the length of N, the result of calculation will be stored into register D and D+1.
- The output indication "D=0" will be ON if the value of calculation is 0.
- It will not execute the calculation and the output indication "ERR" will be ON if the length is invalid.
- When communicating with the intelligent peripheral in binary data fromat, the CRC16 error detection is used very often; the well known Modbus RTU communication protocol uses this method for error detection of message frame.
- CRC16 is the check value of a Cyclical Redundancy Check calculation performed on the message contents.
- Perform the CRC16 calculation on the received message data and error check value, the result of the calculation value must be 0, it means no error within this message frame.



Description : When M0 changes from  $0 \rightarrow 1$ , it will execute the CRC16 calculation starting from lower byte of R0, the length is assigned by D0, and then stores the CRC value into register R0+V and R0+V+1.

It is supposed D0=10, the registers R10 and R11 will store the CRC16 value.

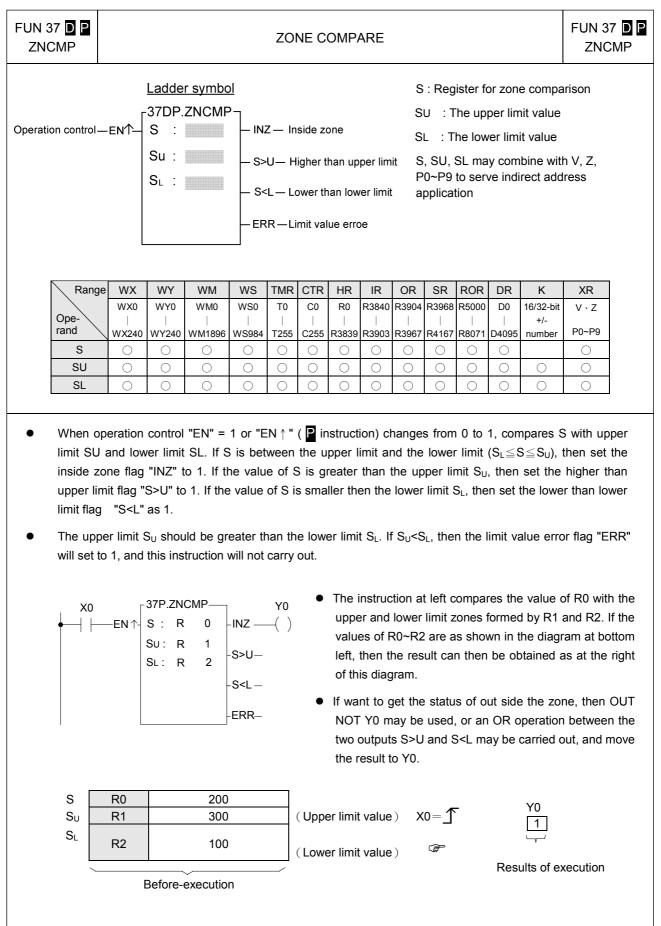

|    | :          | S        |
|----|------------|----------|
| _  | High Byte  | Low Byte |
| R0 | Don't care | Byte-0   |
| R1 | Don't care | Byte-1   |
| R2 | Don't care | Byte-2   |
| R3 | Don't care | Byte-3   |
| R4 | Don't care | Byte-4   |
| R5 | Don't care | Byte-5   |
| R6 | Don't care | Byte-6   |
| R7 | Don't care | Byte-7   |
| R8 | Don't care | Byte-8   |
| R9 | Don't care | Byte-9   |
|    |            |          |

|     | I         | D        |
|-----|-----------|----------|
|     | High Byte | Low Byte |
| R10 | 00        | CRC-Hi   |
| R11 | 00        | CRC-Lo   |

| - | UN32         |                  | CON                 | VERTI                                               | NG TH            | IE RA | W VALUE OF 4~20MA ANALOG INPUT<br>(ADCNV)                                                                                                                                                                                                                                                                  | FUN32<br>ADCNV  |
|---|--------------|------------------|---------------------|-----------------------------------------------------|------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|   | Operation Co |                  | EN                  | <u>adder</u><br>32.ADC<br>PI :<br>S :<br>N :<br>D : |                  |       | <ul> <li>PI : 0, the polarity setting of analog input module position</li> <li>: 1, the polarity setting of analog input module position</li> <li>S : Starting address of source registers</li> <li>N : Quantity of conversion (In Word)</li> <li>D : Starting address of destination registers</li> </ul> | ·               |
|   | Range        | HR               | IR                  | ROR                                                 | DR               | K     | S, N, D may associate with V \ Z \ P0~P9 index re                                                                                                                                                                                                                                                          | gister to serve |
|   | Ope-<br>rand | R0<br> <br>R3839 | R3840<br> <br>R3903 | R5000<br> <br>R8071                                 | D0<br> <br>D4095 |       | the indirect addressing application.                                                                                                                                                                                                                                                                       |                 |
|   | PI           |                  |                     |                                                     |                  | 0~1   |                                                                                                                                                                                                                                                                                                            |                 |
|   | S            | $\bigcirc$       | 0                   | 0                                                   | $\bigcirc$       |       |                                                                                                                                                                                                                                                                                                            |                 |
|   | Ν            | $\bigcirc$       |                     | 0                                                   | 0                | 1~64  |                                                                                                                                                                                                                                                                                                            |                 |
|   | D            | $\bigcirc$       |                     | <b>*</b>                                            | $\bigcirc$       |       |                                                                                                                                                                                                                                                                                                            |                 |
|   |              |                  |                     |                                                     |                  |       |                                                                                                                                                                                                                                                                                                            |                 |

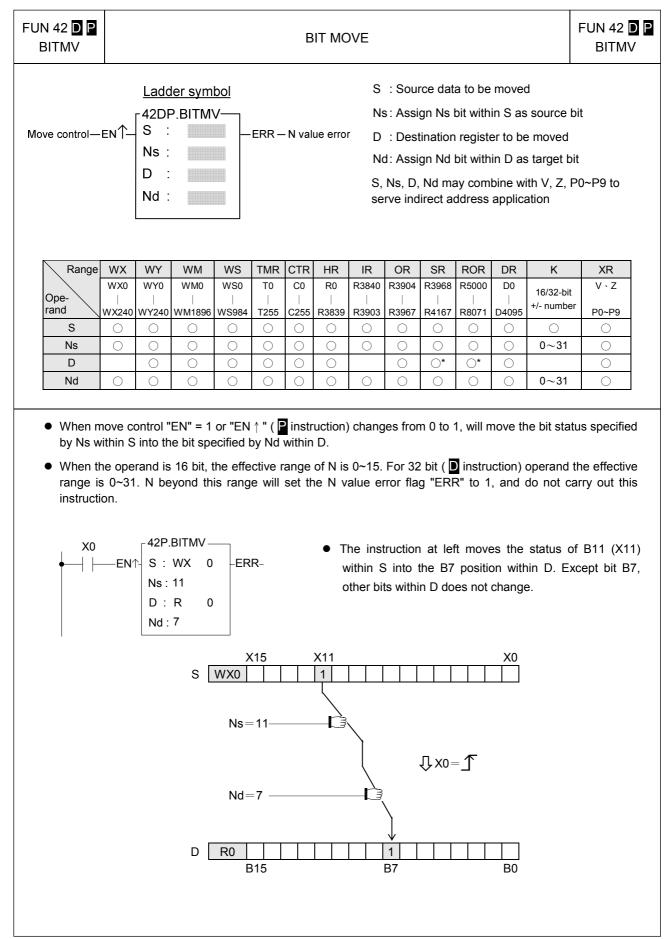
- When the analog input is 4~20mA, the analog input module is one of the solution to get this kind of signal, but the input span of the analog input module is 0~20mA (Setting at 10V ⋅ Unipolar), however there will exist the offset of the raw reading value; this instruction is applied to eliminate the offset and convert the raw reading value into the range of 0~4095(12-bit) or 0~16383(14-bit), it is more convenient for following operation.
- When execution control "EN"=1, it will execute the conversion starting from S, length by N, and then store the results into the D registers.
- This instruction will not act if invalid length of N.
- When the input "F/T" =0, it assigns the 12-bit analog input module; while "F/T" =1, it assigns the 14-bit analog input module.

Example :

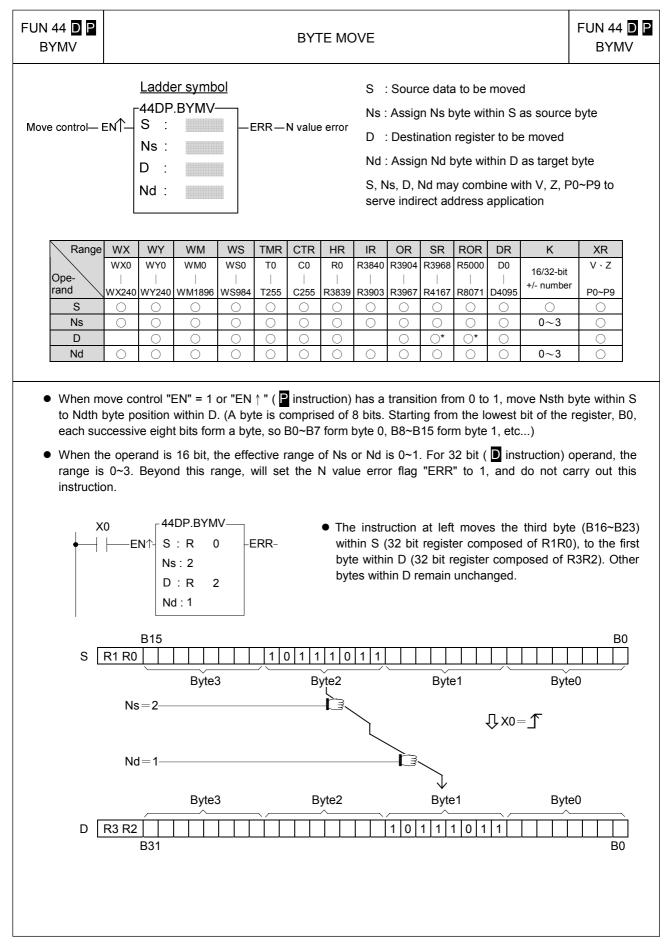



Description : When M0 is ON, it will perfom 6 points of conversion starting from R3840, where the offset of  $4 \sim 20$ mA raw reading value will be eliminated, and the corresponding value  $0 \sim 4095$  will be stored into R500 $\sim$ R505.

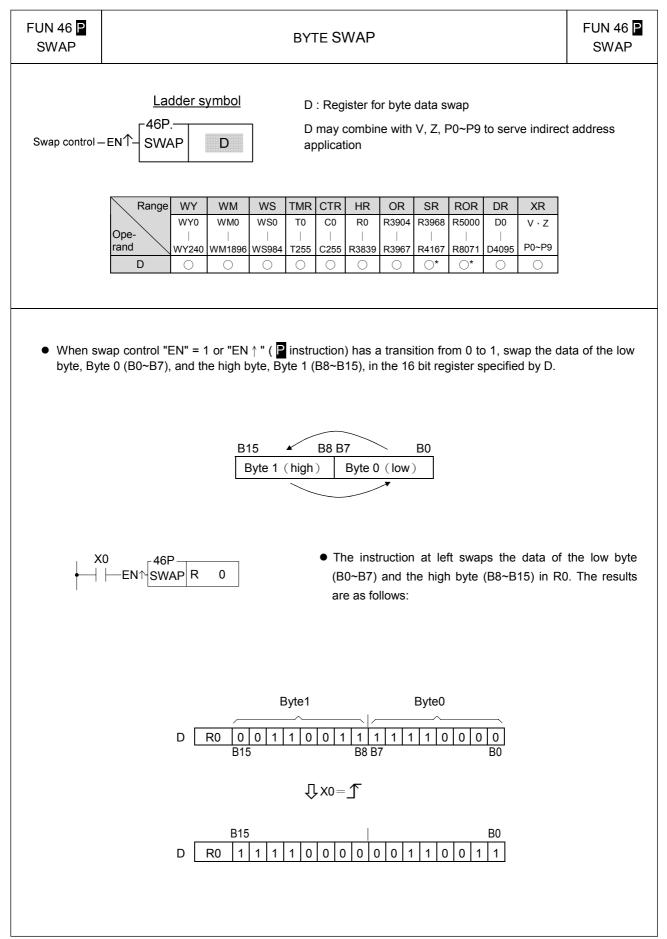
| S     |       |     | D    |      |         |
|-------|-------|-----|------|------|---------|
| R3840 | -1229 |     | R500 | 0    | (4 mA)  |
| R3841 | 409   |     | R501 | 2047 | (12 mA) |
| R3842 | 2047  | ⇒   | R502 | 4095 | (20 mA) |
| R3843 | -2048 | L-/ | R503 | 0    | (0 mA)  |
| R3844 | -2048 |     | R504 | 0    | (0 mA)  |
| R3845 | -2048 |     | R505 | 0    | (0 mA)  |
|       |       |     |      |      |         |

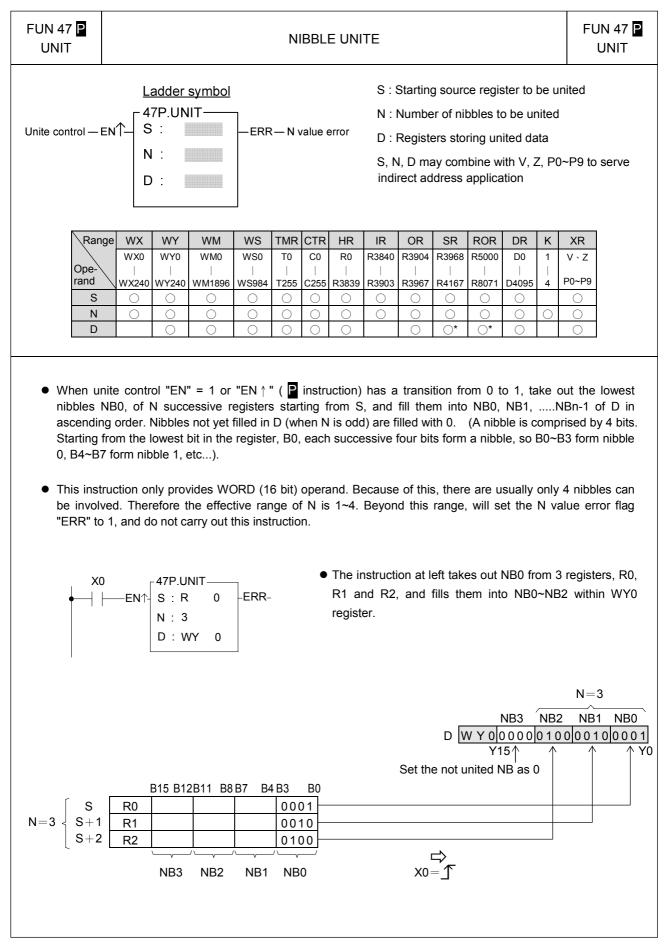

| FUN 35 D P<br>XOR        |                          |                                   |                                                         |                   | E                     | EXCL            | USIV                                       | E OR                        |                                |                              |                            |                              |                           | FUI                          | N 35 D<br>XOR                   |
|--------------------------|--------------------------|-----------------------------------|---------------------------------------------------------|-------------------|-----------------------|-----------------|--------------------------------------------|-----------------------------|--------------------------------|------------------------------|----------------------------|------------------------------|---------------------------|------------------------------|---------------------------------|
| Operation control        | — en↑-                   |                                   |                                                         |                   | — D=0                 | – Res           | sult as                                    | 0                           | Sb:<br>D:<br>Sa,               | Sourc<br>Regis<br>Sb, D      | e data<br>ter sto<br>may o | b for o<br>pring X<br>combir | exclusiv<br>(OR res       | ve or op<br>sults<br>V, Z, F | peration<br>peration<br>0~P9 to |
| Range                    | e WX                     | WY                                | WM                                                      | WS                | TMR                   | CTR             | HR                                         | IR                          | OR                             | SR                           | ROR                        | DR                           | К                         | XR                           |                                 |
| Ope-<br>rand             | WX0<br> <br> <br>  WX240 | WY0<br> <br>WY240                 | WM0<br> <br>WM1896                                      | WS0<br> <br> <br> | T0<br> <br> <br> <br> | C0<br> <br>C255 | R0<br> <br>R3839                           |                             |                                |                              |                            | D0<br> <br>D4095             | 16/32bit<br>+/-<br>number | V ∖ Z<br>P0~P9               |                                 |
| Sa                       | 0                        | 0                                 | $\bigcirc$                                              | 0                 | 0                     | $\bigcirc$      | 0                                          | $\bigcirc$                  | $\bigcirc$                     | 0                            | 0                          | 0                            |                           | 0                            | _                               |
| Sb                       | 0                        | 0                                 | 0                                                       | $\bigcirc$        | 0                     | $\bigcirc$      | $\bigcirc$                                 | $\bigcirc$                  | $\bigcirc$                     | $\bigcirc$                   | 0                          | $\bigcirc$                   | 0                         | 0                            |                                 |
| D                        |                          | $\bigcirc$                        | 0                                                       | $\bigcirc$        | $\bigcirc$            | $\bigcirc$      | $\bigcirc$                                 |                             | $\bigcirc$                     | <b>O*</b>                    | <b>()*</b>                 | $\bigcirc$                   |                           | 0                            |                                 |
| correspon<br>then set th | iding bits               | s of Sa<br>spondir                | and Sb<br>ng bit wit                                    | (B0∼B<br>thin D   | 815 or<br>as 1, i     | B0~B<br>otherw  | 31), a<br>/ise as                          | nd if b<br>s 0.             | its at t                       | he sar                       | ne pos                     |                              | is to dinave dif          |                              |                                 |
| correspon                | iding bit:<br>ne corre   | s of Sa<br>spondir<br>n, if all f | and Sb<br>ng bit wit<br>the bits i<br>(OR<br>R 0<br>R 1 | (B0∼B<br>thin D   | as 1, or<br>as 1, o   | B0~B<br>otherw  | 31), a<br><i>i</i> ise as<br>set th<br>• T | nd if b<br>s 0.<br>he 0 fla | its at t<br>ig "D =<br>tructio | he sar<br>: 0" to<br>n at le | ne pos<br>1.<br>ft mak     | sition h                     |                           | fferent<br>(OR op            | status,<br>eration              |

|         | 86 <b>D</b> P<br>NR               |                                    |                                   |                                                                                               |                                                                   | EX                                 | XCLL                                                              | ISIVE                                                                          | NOR                                                                                            |                                                  |                                                   |                                       |                               |                                    | FUN 3<br>XI      | 86 <b>D</b><br>NR |
|---------|-----------------------------------|------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------|-------------------------------|------------------------------------|------------------|-------------------|
| Operati | ion control-                      | – en∱-                             |                                   |                                                                                               |                                                                   | - D=0 ·                            | — Res                                                             | sult as (                                                                      | ) St<br>D<br>Sa                                                                                | o : Data<br>: Reg<br>a, Sb, I                    | a a for<br>a b for<br>ister st<br>D may<br>addres | XNR c<br>oring 2<br>combi             | operatio<br>XNR re<br>ne with | on<br>esults<br>n V, Z, P(         | )~P9 tc          | ) serve           |
| ſ       | Range                             | WX                                 | WY                                | WM                                                                                            | WS                                                                | TMR                                | CTR                                                               | HR                                                                             | IR                                                                                             | OR                                               | SR                                                | ROR                                   | DR                            | К                                  | XR               | 1                 |
|         | Trange                            | WX0                                | WY0                               | WM0                                                                                           | WS0                                                               | TO                                 | C1K                                                               | R0                                                                             | R3840                                                                                          | R3904                                            | R3968                                             | R5000                                 | DR<br>D0                      |                                    | V · Z            |                   |
|         | Ope-<br>rand                      | <br>W/X240                         |                                   | <br>WM1896                                                                                    | <br>WS984                                                         | <br>T255                           | <br>C255                                                          | <br>R3839                                                                      | <br>R3903                                                                                      | <br>                                             | <br>R4167                                         | <br>R8071                             | <br>D4095                     | 16/32-bit<br>± number              | P0~P9            |                   |
|         | Sa                                | 0                                  | 0                                 | 0                                                                                             | 0                                                                 | 0                                  | 0                                                                 | 0                                                                              | 0                                                                                              | 0                                                | 0                                                 | 0                                     | 04095                         | 0                                  | 0                | _                 |
|         | Sb                                | 0                                  | 0                                 | 0                                                                                             | 0                                                                 | 0                                  | 0                                                                 | 0                                                                              | 0                                                                                              | 0                                                | 0                                                 | 0                                     | 0                             | 0                                  | 0                |                   |
|         | D                                 |                                    | $\bigcirc$                        | 0                                                                                             | 0                                                                 | $\bigcirc$                         | $\bigcirc$                                                        | 0                                                                              |                                                                                                | $\bigcirc$                                       | <b>O*</b>                                         | <b>O*</b>                             | $\bigcirc$                    |                                    | $\bigcirc$       |                   |
| •       | correspo<br>correspo<br>After the | nding l<br>nding b                 | oits of<br>bit withi              | peration<br>Sa and<br>n D as 1                                                                | of dat<br>Sb (B(<br>I. If not                                     | ta Sa<br>)~B15<br>then s           | and<br>5 or B<br>set it t                                         | Sb. 1<br>1~B31<br>o 0.                                                         | ⁻he op<br>), and                                                                               | eration<br>if the                                | n of th<br>bit ha                                 | nis fur                               | nction                        | perform<br>is to co<br>value, th   | mpare            | the               |
| •       | correspo<br>correspo              | nding I<br>nding b<br>operat<br>X0 | bits of<br>bit withi<br>ion, if t | peration<br>Sa and<br>n D as 1                                                                | of dat<br>Sb (B(<br>I. If not<br>n D are<br>R<br>0<br>1           | ta Sa<br>)~B15<br>then s           | and<br>5 or B<br>set it t                                         | Sb. 1<br>1~B31<br>o 0.<br>set the                                              | The op<br>), and<br>0 flag<br>The ins                                                          | eration<br>if the<br>"D=0"<br>tructio            | n of th<br>bit ha<br>to 1.<br>n at le<br>R1 reg   | nis fur<br>s the<br>ft mak            | nction<br>same<br>es a lo     | is to co                           | mpare<br>len set | the<br>the        |
| •       | correspo<br>correspo              | nding I<br>nding b<br>operat<br>X0 | bits of<br>bit withi<br>ion, if t | peration<br>Sa and<br>n D as 1<br>he bits in<br>36P.XNI<br>Sa : R<br>Sb : R<br>D : R<br>D : R | of dat<br>Sb (B(<br>I. If not<br>n D are<br>0<br>1<br>2<br>1<br>2 | ta Sa<br>D~B15<br>then s<br>all 0, | and<br>5  or  B<br>5  set it  t<br>then s<br>-<br>1 1<br>1 1<br>1 | Sb. 1<br>$1 \sim B31$<br>o 0.<br>set the<br>0 1<br>1 1<br>$X0 = \frac{2}{100}$ | The op         0 flag         0 flag         The ins         of the FR         1 0         0 1 | eration<br>if the<br>"D=0"<br>tructio<br>2 regis | n of the bit has to 1.                            | his fur<br>s the<br>ft mak<br>gisters | nction<br>same<br>es a lo     | is to co<br>value, th<br>ogical XN | mpare<br>len set | the<br>the        |




| FUN 40 D P<br>BITRD                         |                                                                                                                                                                                                     | BIT READ                                                                                                                                 |                                                              |                                       |                                               |                                                                |                                                |                                                    |                                       |                                        |                                     |                                            | D D P<br>RD       |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------|-----------------------------------------------|----------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------------|-------------------------------------|--------------------------------------------|-------------------|
| Operation contro                            |                                                                                                                                                                                                     | der symbol<br>P.BITRD                                                                                                                    |                                                              | — Outp<br>— N va                      |                                               | N<br>S,<br>ind                                                 | : The<br>N ma                                  |                                                    | nber o<br>oine w                      | f the S<br>ith V, 2                    | 6 data to<br>Z, P0~P9<br>า          |                                            |                   |
| Range<br>Ope-<br>rand<br>S<br>N             | WX0 WY0<br>                                                                                                                                                                                         | WM         WS           WM0         WS0           I         I           MM1896         WS984           O         O           O         O | TMR<br>T0<br> <br>T255<br>()<br>()                           | CTR<br>C0<br>()<br>C255<br>()<br>()   | HR<br>R0<br> <br>R3839<br>()                  | IR<br>R3840<br><br>R3903<br><br>                               |                                                | SR<br>R3968<br> <br>R4167<br> <br>                 | ROR<br>R5000<br> <br>R8071<br> <br>   | DR<br>D0<br> <br>D4095<br>〇            | K<br>16/32-bit<br>+/- numbe<br>0~31 |                                            |                   |
| out , ar<br>• When r<br>selecte<br>• When t | ead control "EN<br>d put it to the of<br>ead control "EN<br>d to keep at the<br>he operand is 1<br>nd this range with<br>$0 \qquad = EN \uparrow \begin{bmatrix} 40P.E\\S : V\\N : 7 \end{bmatrix}$ | utput bit "OTB'<br>I" = 0 or "EN ↑<br>Iast state( if N<br>6 bit, the effec<br>Il set the N val<br>BITRD                                  | ".<br>" ( <b>P</b> i<br>11919=<br>tive rai<br>lue erro<br>B( | nstruc<br>0 ) or<br>nge fo<br>or flag | tion) is<br>set to<br>r N is<br>"ERR<br>• The | s not c<br>zero (<br>0~15.  <br>" to 1, a<br>instruc<br>) (X0~ | hange<br>if M19<br>For 32<br>and dc<br>ction a | from (<br>19=1 )<br>bit op<br>o not ca<br>t left r | ) to 1,<br>erand<br>arry ou<br>eads t | The c<br>( D in<br>It this i<br>he 7th | output "O<br>struction              | TB" can<br>) it is 0~3<br>n.<br>• status f | be<br>31.<br>īrom |
|                                             |                                                                                                                                                                                                     |                                                                                                                                          | 15<br>1 1 1 0                                                | 0 0                                   | 1 1 1<br>YC                                   |                                                                | _ <u></u>                                      | 0 1 ]<br>J X0=                                     |                                       | X0<br>0 1                              |                                     |                                            |                   |


| FUN 41 D P<br>BITWR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                                 |                                                |                                          |                                  | BIT    | WRI                          | ΓE                        |                                           |                                              |                                |                                     |                               | FUN 41<br>BITW                      |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------|------------------------------------------------|------------------------------------------|----------------------------------|--------|------------------------------|---------------------------|-------------------------------------------|----------------------------------------------|--------------------------------|-------------------------------------|-------------------------------|-------------------------------------|---|
| Ladder symbol       D: Register for bit write         Write control - EN       D: Register for bit write         N:       N:         Write bit - INB       D: Register for bit write         D: Register for bit write       D: Register for bit write         D: Register for bit write |                                   |                                 |                                                |                                          |                                  |        |                              |                           |                                           |                                              |                                | 9                                   |                               |                                     |   |
| Range<br>Ope-<br>rand<br>D<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WX0                               | WY<br>WY0<br>-<br>WY240<br>O    | WM<br>WM0<br>WM1896                            | WS<br>WS0<br>WS984<br>O                  | TMR<br>T0<br> <br>T255<br>O<br>O | C0<br> | HR<br>R0<br>-<br>R3839<br>O  | IR<br>R3840<br> <br>R3903 |                                           | SR<br>R3968<br> <br>R4167<br>()*             |                                |                                     | or                            | XR<br>0 V · Z<br>31 P0~P9<br>0      |   |
| the Nth b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bit of req<br>e opera<br>his rang | gister D<br>nd is 1<br>ge, will | ).<br>6 bit, the<br>set the I<br>BITWR–<br>R 0 | e effecti                                | ve rar<br>error                  | nge of | f N is (<br>ERR"<br>• T<br>I | )~15. F<br>to 1, ar       | or 32 b<br>nd do r<br>tructior<br>b B3 of | bit ( D i<br>not carr<br>n at left<br>R0. As | nstruc<br>y out tl<br>t writes | tion) o<br>his inst<br>s the s<br>g | perand<br>tructior<br>tatus c | bit (INB) in<br>l it is 0~31.<br>n. | N |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                 | D                                              | N=3-<br><u>R0</u><br>B <sup>^</sup><br>E |                                  | her th |                              | <1 1<br>T                 |                                           | 1<br>B3                                      | xo=_1<br>                      |                                     |                               |                                     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                 |                                                |                                          |                                  |        |                              |                           |                                           |                                              |                                |                                     |                               |                                     |   |



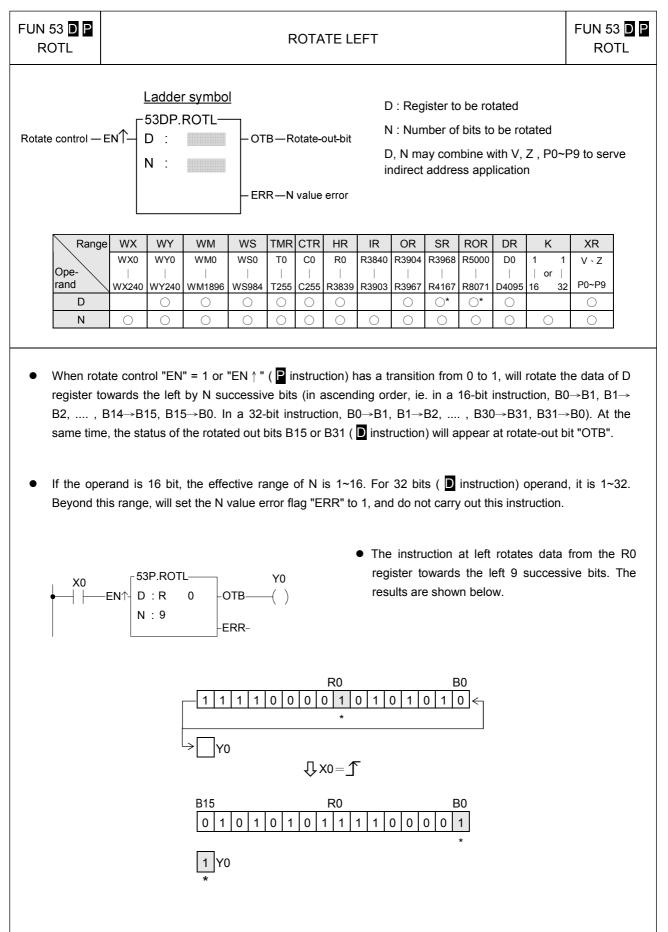

| NE   | 43 <b>D P</b><br>3MV      |                 |                                              |                                       |                                             |            | NIBE       | BLE M                                          | OVE                                            |                                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                | FUN 43<br>NBM                          |
|------|---------------------------|-----------------|----------------------------------------------|---------------------------------------|---------------------------------------------|------------|------------|------------------------------------------------|------------------------------------------------|-----------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|----------------------------------------|
| Move | control—EN                | ו∱_ 5<br>₪<br>נ | 3DP. <br>3 :<br> s :                         | r symbo<br>NBMV–                      |                                             | R-N        | I value    | e error                                        | N:<br>D<br>N:<br>S;                            | s: Assi<br>: Dest<br>d: Assi<br>, Ns, D | gn Ns<br>tinatioi<br>gn Nd<br>, Nd m       | nibble<br>n regis<br>nibble<br>nay cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ter to be<br>within                                          | S as sou<br>e moved<br>D as targ<br>vith V, Z, | rce nibble<br>let nibble<br>P0~P9 to   |
|      | Range                     | WX<br>WX0       | WY<br>WY0                                    | WM<br>WM0                             | WS<br>WS0                                   | TMR<br>T0  | CTR<br>C0  | HR<br>R0                                       | IR<br>R3840                                    | OR<br>R3904                             | SR                                         | ROR<br>R5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DR<br>D0                                                     | K<br>16/32-bit                                 | XR<br>V \ Z                            |
|      | Ope-<br>rand              |                 |                                              | WM1896                                |                                             |            |            |                                                |                                                |                                         |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br>D4095                                                    | +/-                                            | P0~P9                                  |
|      | S                         | 0               | $\bigcirc$                                   | 0                                     | 0                                           | $\bigcirc$ | $\bigcirc$ | 0                                              | 0                                              | $\bigcirc$                              | 0                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                            | $\bigcirc$                                     | 0                                      |
|      | Ns                        | 0               | 0                                            | 0                                     | 0                                           | 0          | 0          | 0                                              | 0                                              | 0                                       | <br>★                                      | <b>○</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                            | 0~7                                            | 0                                      |
|      | D<br>Nd                   | $\bigcirc$      | 0                                            | 0                                     | 0                                           | 0          | 0          | 0                                              | $\bigcirc$                                     | 0                                       | <br>_ ()                                   | O*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                            | 0~7                                            | 0                                      |
|      | range is 0<br>instruction | )~7. B          | eyond                                        | this ran                              |                                             |            |            | N valu                                         | e errc                                         | or flag                                 | "ERR                                       | " to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , and o                                                      | do not c                                       |                                        |
|      | range is C                | )~7. B          | eyond                                        | this ran<br>IBMV —<br>R 0<br>2        |                                             | l set      |            | • The<br>(B8                                   | e errc<br>e inst<br>8~B11                      | or flag<br>ruction<br>) withir          | "ERR<br>nat l<br>nSto                      | " to 1<br>eft me<br>the firs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , and o<br>oves th<br>st nibble                              | do not c<br>ne third                           | arry out th<br>nibble N<br>34~B7) with |
|      | range is 0<br>instruction | )~7. B          | eyond<br>43P.N<br>S : F<br>Ns : 2            | this ran<br>IBMV —<br>R 0<br>2<br>R 1 | ge, wil                                     | I set      |            | • The<br>(B8<br>D. (                           | e erro<br>e inst<br>3~B11<br>Other             | or flag<br>ruction<br>) withir          | "ERR<br>nat l<br>nSto                      | " to 1<br>eft me<br>the firs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , and o<br>oves th<br>st nibble                              | do not c<br>ne third<br>e NB1 (E               | arry out th<br>nibble N<br>34~B7) with |
|      | range is 0<br>instruction | )~7. B          | eyond<br>- 43P.N<br>S : F<br>Ns : 2<br>D : F | this ran                              | ge, wil                                     | 5<br>NB:   |            | • The<br>(B8                                   | e erro<br>e inst<br>3~B11<br>Other             | or flag<br>ruction<br>) withir          | "ERR<br>n at I<br>n S to<br>s withi        | to 1<br>eft ma<br>the fir:<br>n D rei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , and o<br>oves th<br>st nibble<br>main un                   | do not c<br>ne third<br>e NB1 (E               | arry out th<br>nibble N<br>34~B7) with |
|      | range is 0<br>instruction | )~7. B          | eyond<br>- 43P.N<br>S : F<br>Ns : 2<br>D : F | this ran                              | ge, wil                                     | 5<br>NB:   |            | <ul> <li>The (B8 D. 1)</li> <li>1 1</li> </ul> | e erro<br>e inst<br>3~B11<br>Other             | ruction<br>) withir<br>nibbles          | "ERR<br>n at I<br>n S to<br>s within<br>31 | to 1<br>eft ma<br>the fir:<br>n D rei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , and o<br>oves th<br>st nibble<br>main un<br>B0<br>B0<br>30 | do not c<br>ne third<br>e NB1 (E               | arry out th<br>nibble N<br>34~B7) with |
|      | range is 0<br>instruction | )~7. B          | eyond<br>- 43P.N<br>S : F<br>Ns : 2<br>D : F | this ran                              | ge, wil                                     | 5<br>NB:   |            | <ul> <li>The (B8 D. 1)</li> <li>1 1</li> </ul> | e erro<br>e inst<br>3~B11<br>Other             | ruction<br>) withir<br>nibbles          | "ERR<br>n at I<br>n S to<br>s within<br>31 | the firmed for the fi | , and o<br>oves th<br>st nibble<br>main un<br>B0<br>B0<br>30 | do not c<br>ne third<br>e NB1 (E               | arry out th<br>nibble N<br>34~B7) with |
|      | range is 0<br>instruction | )~7. B          | eyond<br>- 43P.N<br>S : F<br>Ns : 2<br>D : F | this ran                              | ge, wil<br>-ERR<br>B18<br>0<br>Ns=2<br>Nd=1 | NB3        | the M      | <ul> <li>The (B8 D. 1)</li> <li>1 1</li> </ul> | e erro<br>e inst<br>3~B11<br>Other<br>0 1<br>2 | ruction<br>) withir<br>nibbles          | "ERR<br>n at I<br>n S to<br>s within<br>31 | " to 1<br>eft ma<br>the fir<br>n D rei<br>Ni<br>Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , and o<br>oves th<br>st nibble<br>main un<br>B0<br>B0<br>30 | do not c<br>ne third<br>e NB1 (E               | arry out th<br>nibble N<br>34~B7) with |



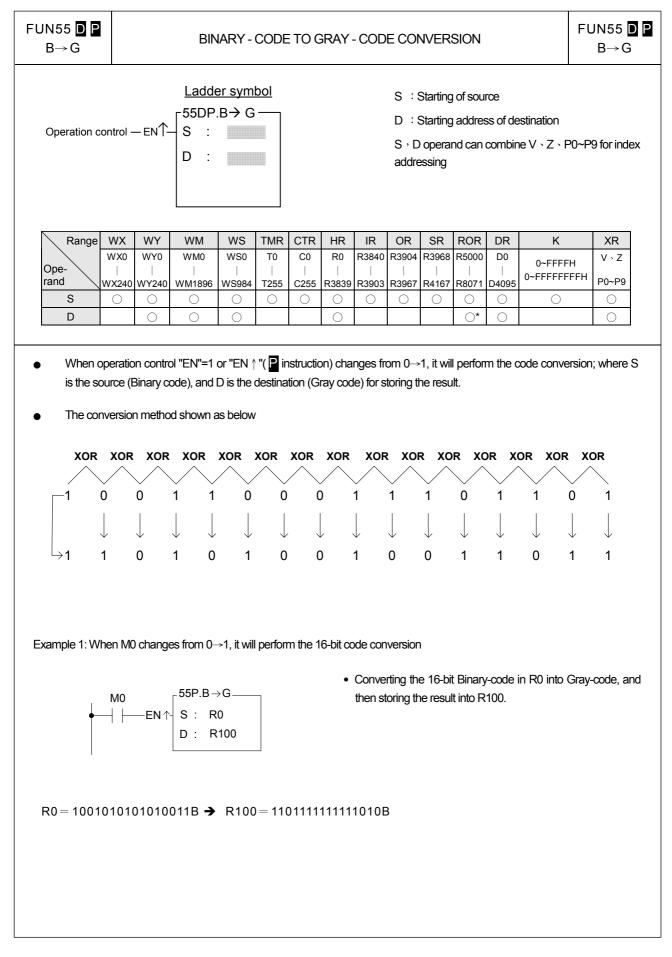
| FUN 45 D P<br>XCHG       |                                                                  |                                                                                                                                         |                      | EXC                          | CHAN             | IGE                        |                    |                   |                                |                              |                           | FUN 45 D<br>XCHG |
|--------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|------------------|----------------------------|--------------------|-------------------|--------------------------------|------------------------------|---------------------------|------------------|
| Exchange contro          | . Г <sup>45D</sup>                                               |                                                                                                                                         |                      |                              | Db<br>Da         | : Reg<br>, Db n            | jister b           | o to be<br>ombine | e excha<br>e excha<br>e with ' | anged                        |                           | serve indirect   |
|                          | Ope-<br>rand wy<br>Da                                            | VY         WM           YY0         WM0                                 /240         WM1896           O         O           O         O | WS0                  | TMR<br>T0<br>-<br>T255<br>() | C0               | HR<br>R0<br><br>R3839<br>O | 1                  | R3968             |                                | DR<br>D0<br> <br>D4095<br>() | XR<br>V · Z<br>P0~P9<br>O |                  |
| ● When execontents of X0 | change control<br>of register Da a<br>45P.)<br>EN∱- Da ∶<br>Db ∶ | nd register D<br>XCHG —<br>R 0                                                                                                          | "EN ↑ "<br>)b in 16  | bits o                       | or 32 I<br>● The | oits (                     | D insti<br>ructior | ructior<br>n at l | ו) form                        | nat.<br>chang                |                           | exchanges the    |
|                          |                                                                  | B<br>Da R0<br>Db R1                                                                                                                     | 115<br>0000<br>1111  | 1                            | 0 0<br>1 1 1     | 00<br>11                   | 0 0                | 0 0 1 1           | 00                             | BC<br>0 0<br>1 1             | )<br>]<br>]               |                  |
|                          |                                                                  | Da R0                                                                                                                                   | 15<br>1 1 1<br>0 0 0 | 1 1                          | 1 1              | 1 1<br>0 0                 | 1 1<br>0 0         | 1 1<br>0 0        | 1 1<br>0 0                     | B0<br>1 1<br>0 0             | ]                         |                  |
|                          |                                                                  |                                                                                                                                         |                      |                              |                  |                            |                    |                   |                                |                              |                           |                  |



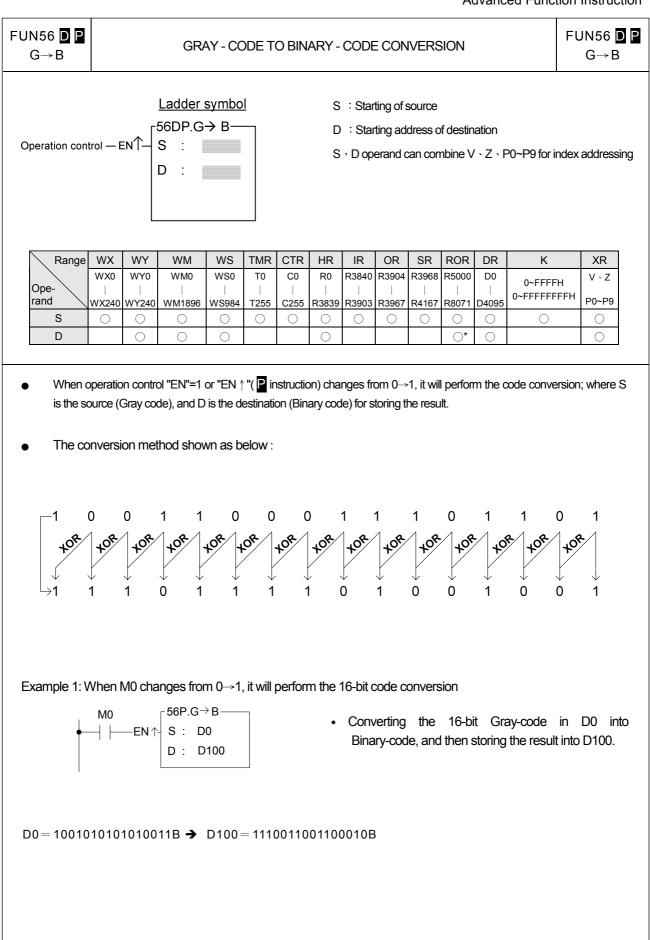



| FUN 4<br>DIS <sup>-</sup>                                                                                                                                                              |                                                                            |                                                                                                            | NIBBLE DISTRIBUTE FUN 48 DIST                                        |                                                                               |                                                   |                                                 |                                                       |                                                        |                                                           |                                                               |                                                          |                                                |                                       |                                                          |                                                       |                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| Ladder symbol         Distribution control—ENTS:      ERRN value error         N:      ERRN value error         D:      S, N, D may combine with V, serve indirect address application |                                                                            |                                                                                                            |                                                                      |                                                                               |                                                   |                                                 |                                                       |                                                        |                                                           | Dution of Z, PC                                               |                                                          |                                                |                                       |                                                          |                                                       |                                                      |
|                                                                                                                                                                                        | Rang<br>Ope-<br>rand<br>S<br>N<br>D                                        | le WX<br>WX0<br>WX240<br>O                                                                                 | WY<br>WY0<br>WY240<br>O                                              | WM<br>WM0<br>WM1896<br>O                                                      | WS<br>WS0<br>WS984<br>O                           | <b>T0</b>                                       | CTR<br>C0<br>                                         | HR<br>R0<br> <br>R3839<br> <br> <br>                   |                                                           |                                                               |                                                          | ROR<br>R5000<br> <br>R8071<br>                 | DR<br>D0<br>D4095<br>O                | K<br>16-bit<br>+/-<br>number<br>0<br>1~4                 | XR<br>V · Z<br>P0~P9<br>O                             |                                                      |
| su<br>th<br>al<br>4<br>TI<br>in                                                                                                                                                        | uccessive<br>le 0 nible<br>l set to<br>bits form<br>his instru-<br>volved, | stribution<br>ve nibbles<br>oles of N<br>zero. (A i<br>m a nibble<br>ruction or<br>so the ef<br>rry out th | s startir<br>registe<br>nibble is<br>e, so B(<br>nly prov<br>fective | ng from<br>rrs starti<br>s compr<br>0~B3 for<br>vides W<br>value o<br>uction. | the lov<br>ng fron<br>ised by<br>rm nibb<br>ORD ( | vest r<br>n D. 1<br>/ 4 bit<br>ble 0,<br>(16 bi | nibble<br>The n<br>ts. Sta<br>B4~E<br>it) op<br>Beyon | NB0<br>ibbles<br>arting<br>37 form<br>erand.<br>d this | within<br>other<br>from th<br>n nibbl<br>. There<br>range | S, and<br>than N<br>he lowe<br>e 1, ef<br>efore t<br>, will s | d distri<br>NB0 in<br>est bit<br>tc)<br>here a<br>et the | bute th<br>each<br>in a re<br>are us<br>N valu | nem in<br>of the<br>gister<br>ually c | n ascend<br>register<br>, B0, ea<br>only 4 r<br>only 4 r | ding ord<br>rs within<br>ch succ<br>ibbles<br>ERR" to | der into<br>n D are<br>cessive<br>can be<br>o 1, and |
|                                                                                                                                                                                        | •                                                                          |                                                                                                            | S : W<br>N : 3<br>D : R                                              | Y 0                                                                           | -ERR                                              | _                                               | •                                                     |                                                        | ster in                                                   |                                                               | e NBC                                                    |                                                |                                       | consec                                                   | utive r                                               | ee WX0<br>egisters<br>30                             |
| s                                                                                                                                                                                      | i WX                                                                       | X15<br>0000<br>NB3                                                                                         |                                                                      | 000                                                                           | 1000                                              | B0                                              | X0=                                                   |                                                        | $\rightarrow$ C<br>$\rightarrow$ D+1<br>$\rightarrow$ D+2 | I R                                                           | B1<br>0 0<br>1 0<br>2 0                                  | 5<br>0 0 0<br>0 0 0<br>0 0 0                   | 000<br>000<br>000                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                  | 0 00<br>0 00                                          | B0<br>0 1<br>1 0                                     |

| FUN49 P<br>BUNIT                      |                                                                                                                                                                               |                                                                                                                                                                |                                                                                                                                                                                                      | BYTE UNITE                                                                               |                                                                                           |                                                                                  | FUN49<br>BUNIT    |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------|
| Execution contr                       | ol—EN↑_                                                                                                                                                                       | <u>Ladder s</u><br>49P.BUN<br>S :<br>N :<br>D :                                                                                                                |                                                                                                                                                                                                      | N :Number<br>D :Registe<br>S, N, D may                                                   | r of bytes to be<br>rs to store the                                                       | united data<br>h V ∖ Z ∖ P0~P9                                                   |                   |
|                                       |                                                                                                                                                                               |                                                                                                                                                                | Range<br>Ope-<br>rand<br>S<br>N<br>D                                                                                                                                                                 | HR ROR DF<br>R0 R5000 Df<br>R3839 R8071 D40<br>0 0 0<br>0 0 0<br>0 0 0<br>0 0 0          | 95<br>)<br>) 1~256                                                                        |                                                                                  |                   |
| combina <ul> <li>This inst</li> </ul> | tion starting                                                                                                                                                                 | from S, le<br>not act if ir                                                                                                                                    | ength by N, a<br>nvalid range c                                                                                                                                                                      | " ( P instruction)<br>nd then store the re<br>of length.<br>heral in binary data         | esults into D reg                                                                         | gisters.                                                                         |                   |
| byte cor                              | nbination fo                                                                                                                                                                  | r following                                                                                                                                                    | word data pr                                                                                                                                                                                         | ocessing.                                                                                |                                                                                           |                                                                                  |                   |
| Example :                             |                                                                                                                                                                               |                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                          |                                                                                           |                                                                                  |                   |
| Example :                             | M2                                                                                                                                                                            |                                                                                                                                                                | 49P.BUNIT-                                                                                                                                                                                           |                                                                                          |                                                                                           |                                                                                  |                   |
| Example :                             | M2                                                                                                                                                                            |                                                                                                                                                                | S : R 1500                                                                                                                                                                                           |                                                                                          |                                                                                           |                                                                                  |                   |
| Example :                             | M2<br>                                                                                                                                                                        |                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                          |                                                                                           |                                                                                  |                   |
| Description:\<br>as                   | When M2 cl                                                                                                                                                                    | —EN↑-<br>hanges fro<br>R999, and<br>I R999=10                                                                                                                  | S: R 1500<br>N: R 999<br>D: R 2500<br>om 0 $\rightarrow$ 1, it withen store the<br>, the results of                                                                                                  |                                                                                          | ers starting fror<br>store into R250                                                      | m R2500.<br>00∼R2504.                                                            | 00, the length is |
| Description:\<br>as                   | When M2 cl<br>ssigned by F<br>is supposed                                                                                                                                     | —_EN↑-<br>hanges fro<br>R999, and<br>I R999=10<br>S                                                                                                            | S: R 1500<br>N: R 999<br>D: R 2500<br>om 0 $\rightarrow$ 1, it withen store the<br>, the results of                                                                                                  | Il perform the byte                                                                      | ers starting fror<br>store into R250                                                      | m R2500.<br>10∼R2504.<br>D                                                       | 00, the length is |
| Description:\<br>as<br>It             | When M2 cl<br>ssigned by F<br>is supposed                                                                                                                                     | EN↑-<br>hanges fro<br>R999, and<br>I R999=10<br>S<br>I Byte                                                                                                    | S: R 1500<br>N: R 999<br>D: R 2500<br>om 0 $\rightarrow$ 1, it withen store the<br>then results c<br>Low Byte                                                                                        | Il perform the byte<br>e results into registe<br>of combination will s                   | ers starting fror<br>store into R250<br>High Byte                                         | m R2500.<br>00∼R2504.<br>D<br>Low Byte                                           | 00, the length is |
| Description:\<br>as<br>It             | When M2 cl<br>ssigned by F<br>is supposed<br>High<br>R1500 Do                                                                                                                 | EN↑-<br>hanges frc<br>R999, and<br>I R999=10<br>I R999=10<br>S<br>I Byte<br>n't care                                                                           | S: R 1500<br>N: R 999<br>D: R 2500<br>om $0 \rightarrow 1$ , it withen store the<br>then store the<br>the results of<br>Low Byte<br>Byte-0                                                           | Il perform the byte<br>e results into registe<br>of combination will s<br>R2500          | ers starting fror<br>store into R250<br>High Byte<br>Byte-0                               | m R2500.<br>10~R2504.<br>D<br>Low Byte<br>Byte-1                                 | 00, the length is |
| Description:\<br>as<br>It             | When M2 cl<br>ssigned by F<br>is supposed<br>High<br>R1500 Do<br>R1501 Do                                                                                                     | EN↑-<br>hanges fro<br>R999, and<br>I R999=10<br>I Byte<br>n't care<br>n't care                                                                                 | S : R 1500<br>N : R 999<br>D : R 2500<br>$0 \rightarrow 1$ , it withen store the<br>, the results of<br>Low Byte<br>Byte-0<br>Byte-1                                                                 | Il perform the byte<br>e results into registe<br>of combination will s<br>R2500<br>R2501 | ers starting fror<br>store into R250<br>High Byte<br>Byte-0<br>Byte-2                     | n R2500.<br>10 ~ R2504.<br>D<br>Low Byte<br>Byte-1<br>Byte-3                     | 00, the length is |
| Description:\<br>as<br>It             | When M2 cl<br>ssigned by F<br>is supposed<br>High<br>R1500 Do<br>R1501 Do<br>R1502 Do                                                                                         | EN↑-<br>hanges fro<br>R999, and<br>I R999=10<br>I Byte<br>n't care<br>n't care<br>n't care                                                                     | S : R 1500<br>N : R 999<br>D : R 2500<br>m 0→1, it withen store the<br>then store the<br>the results of<br>Low Byte<br>Byte-0<br>Byte-1<br>Byte-2                                                    | R2500<br>R2501<br>R2502                                                                  | ers starting fror<br>store into R250<br>High Byte<br>Byte-0<br>Byte-2<br>Byte-4           | m R2500.<br>10~R2504.<br>D<br>Low Byte<br>Byte-1<br>Byte-3<br>Byte-5             | 00, the length is |
| Description:\<br>as<br>It             | When M2 cl<br>ssigned by F<br>is supposed<br>R1500 Do<br>R1501 Do<br>R1502 Do<br>R1503 Do                                                                                     | EN↑-<br>hanges fro<br>R999, and<br>I R999=10<br>S<br>n Byte<br>n't care<br>n't care<br>n't care<br>n't care                                                    | S : R 1500<br>N : R 999<br>D : R 2500<br>m 0→1, it wi<br>then store the<br>then results of<br>Low Byte<br>Byte-0<br>Byte-1<br>Byte-2<br>Byte-3                                                       | R2500<br>R2501<br>R2502<br>R2503                                                         | ers starting fror<br>store into R250<br>High Byte<br>Byte-0<br>Byte-2<br>Byte-4<br>Byte-6 | m R2500.<br>10 ~ R2504.<br>D<br>Low Byte<br>Byte-1<br>Byte-3<br>Byte-5<br>Byte-7 | 00, the length is |
| Description:\<br>as<br>It             | When M2 cl<br>ssigned by F<br>is supposed<br>R1500 Do<br>R1501 Do<br>R1502 Do<br>R1503 Do<br>R1503 Do<br>R1504 Do                                                             | EN↑-<br>hanges fro<br>R999, and<br>I R999=10<br>I Byte<br>n't care<br>n't care<br>n't care                                                                     | S : R 1500<br>N : R 999<br>D : R 2500<br>m 0→1, it withen store the<br>then store the<br>the results of<br>Low Byte<br>Byte-0<br>Byte-1<br>Byte-2                                                    | R2500<br>R2501<br>R2502                                                                  | ers starting fror<br>store into R250<br>High Byte<br>Byte-0<br>Byte-2<br>Byte-4           | m R2500.<br>10~R2504.<br>D<br>Low Byte<br>Byte-1<br>Byte-3<br>Byte-5             | 00, the length is |
| Description : \<br>as<br>It           | When M2 cl<br>ssigned by F<br>is supposed<br>R1500 Do<br>R1501 Do<br>R1502 Do<br>R1503 Do<br>R1504 Do<br>R1505 Do                                                             | EN↑-<br>hanges fro<br>R999, and<br>I R999=10<br>Byte<br>n't care<br>n't care<br>n't care<br>n't care<br>n't care<br>n't care                                   | S : R 1500<br>N : R 999<br>D : R 2500<br>om 0→1, it wi<br>then store the<br>, the results of<br><u>Low Byte</u><br><u>Byte-0</u><br><u>Byte-1</u><br><u>Byte-2</u><br><u>Byte-3</u><br><u>Byte-4</u> | R2500<br>R2501<br>R2502<br>R2503                                                         | ers starting fror<br>store into R250<br>High Byte<br>Byte-0<br>Byte-2<br>Byte-4<br>Byte-6 | m R2500.<br>10 ~ R2504.<br>D<br>Low Byte<br>Byte-1<br>Byte-3<br>Byte-5<br>Byte-7 | 00, the length is |
| Description : \<br>as<br>It           | When M2 cl<br>ssigned by F<br>is supposed<br>R1500 Do<br>R1501 Do<br>R1502 Do<br>R1503 Do<br>R1503 Do<br>R1504 Do<br>R1505 Do<br>R1506 Do                                     | EN↑-<br>hanges fro<br>R999, and<br>I R999=10<br>I Byte<br>n't care<br>n't care<br>n't care<br>n't care<br>n't care<br>n't care<br>n't care                     | S : R 1500<br>N : R 999<br>D : R 2500<br>m 0→1, it withen store the<br>, the results of<br>Byte-0<br>Byte-1<br>Byte-2<br>Byte-3<br>Byte-4<br>Byte-5                                                  | R2500<br>R2501<br>R2502<br>R2503                                                         | ers starting fror<br>store into R250<br>High Byte<br>Byte-0<br>Byte-2<br>Byte-4<br>Byte-6 | m R2500.<br>10 ~ R2504.<br>D<br>Low Byte<br>Byte-1<br>Byte-3<br>Byte-5<br>Byte-7 | 00, the length is |
| Description : \<br>as<br>It           | When M2 cl<br>ssigned by F<br>is supposed<br>R1500 Do<br>R1501 Do<br>R1502 Do<br>R1503 Do<br>R1503 Do<br>R1504 Do<br>R1505 Do<br>R1505 Do<br>R1506 Do<br>R1507 Do<br>R1508 Do | EN↑-<br>hanges fro<br>R999, and<br>I R999=10<br>I Byte<br>In't care<br>In't care<br>In't care<br>In't care<br>In't care<br>In't care<br>In't care<br>In't care | S : R 1500<br>N : R 999<br>D : R 2500<br>m 0→1, it withen store the<br>, the results of<br>Byte-0<br>Byte-1<br>Byte-2<br>Byte-3<br>Byte-4<br>Byte-5<br>Byte-6                                        | R2500<br>R2501<br>R2502<br>R2503                                                         | ers starting fror<br>store into R250<br>High Byte<br>Byte-0<br>Byte-2<br>Byte-4<br>Byte-6 | m R2500.<br>10 ~ R2504.<br>D<br>Low Byte<br>Byte-1<br>Byte-3<br>Byte-5<br>Byte-7 | 00, the length is |


| FUN50 P<br>BDIST |            |                                         | В                                    | YTE DIST                                                                                                                                                                                                                                                              | RIBUTE                                                                                                               |                                                  |                            | FUN50 P<br>BDIST |
|------------------|------------|-----------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------|------------------|
| Execution contro | I— EN∱–    | Ladder s<br>- 50P.BDI<br>S:<br>N:<br>D: | -                                    | N : N<br>D : R                                                                                                                                                                                                                                                        | lumber of by<br>Registers to s<br>D may asso                                                                         | vtes to be dis<br>store the dist<br>ciate with V |                            |                  |
|                  |            |                                         | Range<br>Ope-<br>rand<br>S<br>N<br>D | HR         RC           R0         R50                                 R3839         R80                                 ()                     ()                     ()                     ()                     ()                     ()                     () | D00         D0                     071         D4095         )         )           0         ()         ()         ) | K<br>1~256                                       |                            |                  |
|                  |            |                                         | l" =1 or "EN ↑<br>ength by N, an     | _                                                                                                                                                                                                                                                                     |                                                                                                                      | -                                                | 0→1, it will perf<br>ters. | orm the byte     |
| This inst        | truction w | vill not act if                         | invalid range of                     | of length.                                                                                                                                                                                                                                                            |                                                                                                                      |                                                  |                            |                  |
|                  |            | ating with in<br>or data tran           |                                      | heral in bir                                                                                                                                                                                                                                                          | nary data fo                                                                                                         | rmat, this ins                                   | struction may be a         | applied to do    |
| Example :        |            |                                         |                                      |                                                                                                                                                                                                                                                                       |                                                                                                                      |                                                  |                            |                  |
|                  |            | M2                                      | ₋50P.BDIST-                          |                                                                                                                                                                                                                                                                       |                                                                                                                      |                                                  |                            |                  |
|                  | •          |                                         |                                      |                                                                                                                                                                                                                                                                       |                                                                                                                      |                                                  |                            |                  |
|                  |            |                                         | N : R 999                            | )                                                                                                                                                                                                                                                                     |                                                                                                                      |                                                  |                            |                  |
|                  |            |                                         | D : R 1500                           | )                                                                                                                                                                                                                                                                     |                                                                                                                      |                                                  |                            |                  |
|                  |            |                                         |                                      |                                                                                                                                                                                                                                                                       |                                                                                                                      |                                                  |                            |                  |
| as               | signed b   | y R999, and<br>sed R999=9               | d then store the                     | e results int                                                                                                                                                                                                                                                         | o registers                                                                                                          | starting from                                    | R1508.                     | , the length is  |
|                  | F          | S<br>ligh Byte                          | Low Byte                             |                                                                                                                                                                                                                                                                       |                                                                                                                      | High Byte                                        | D<br>Low Byte              |                  |
| R                | 1000       | Byte-0                                  | Byte-1                               |                                                                                                                                                                                                                                                                       | R1500                                                                                                                | 00                                               | Byte-0                     |                  |
|                  | 1001       | Byte-2                                  | Byte-3                               |                                                                                                                                                                                                                                                                       | R1501                                                                                                                | 00                                               | Byte-1                     |                  |
| R                | 1002       | Byte-4                                  | Byte-5                               |                                                                                                                                                                                                                                                                       | R1502                                                                                                                | 00                                               | Byte-2                     |                  |
|                  | 1003       | Byte-6                                  | Byte-7                               |                                                                                                                                                                                                                                                                       | R1503                                                                                                                | 00                                               | Byte-3                     |                  |
| R                | 1004       | Byte-8                                  | Don't care                           |                                                                                                                                                                                                                                                                       | R1504                                                                                                                | 00                                               | Byte-4                     |                  |
|                  |            |                                         |                                      |                                                                                                                                                                                                                                                                       | R1505                                                                                                                | 00                                               | Byte-5                     |                  |
|                  |            |                                         |                                      |                                                                                                                                                                                                                                                                       | R1506                                                                                                                | 00                                               | Byte-6                     |                  |
|                  |            |                                         |                                      |                                                                                                                                                                                                                                                                       | R1507<br>R1508                                                                                                       | 00                                               | Byte-7                     |                  |
|                  |            |                                         |                                      |                                                                                                                                                                                                                                                                       | 1,1000                                                                                                               | 00                                               | Byte-8                     |                  |
|                  |            |                                         |                                      |                                                                                                                                                                                                                                                                       |                                                                                                                      |                                                  |                            |                  |

|   | 51 <b>D P</b><br>HFL                                   |                                       |                                                    |                                                                                                             |                                 |                            | SHI                        | FT LE                                                | FT                                                                                      |                                                       |                                          |                                                                       |                                      |                              | F                   | FUN 5 <sup>.</sup><br>SHF |           |
|---|--------------------------------------------------------|---------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|----------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------|--------------------------------------|------------------------------|---------------------|---------------------------|-----------|
|   | ft control — E<br>hift in bit — I                      |                                       |                                                    | <u>er symb</u><br>2.SHFL-                                                                                   | -0                              | TB—S                       |                            | ut bit<br>e error                                    | N<br>N<br>ir                                                                            | N : Nun<br>N, D ma                                    | jister to<br>nber of<br>ay com<br>∶addre | f bits to<br>nbine v                                                  | o be sh<br>vith V,                   | Z, P0~                       | P9 t                | to serve                  | 0         |
| ſ | Range                                                  | WX                                    | WY                                                 | WM                                                                                                          | WS                              | TMR                        | CTR                        | HR                                                   | IR                                                                                      | OR                                                    | SR                                       | ROR                                                                   | DR                                   | K                            |                     | XR                        | 1         |
|   | 000                                                    | WX0                                   | WY0                                                | WM0                                                                                                         | WS0                             | T0                         | C0                         | R0                                                   | R3840                                                                                   | R3904                                                 | R3968                                    | R5000                                                                 | D0                                   |                              | 1                   | V × Z                     |           |
|   | Ope-<br>rand                                           | <br>WX240                             | <br>WY240                                          | WM1896                                                                                                      | WS984                           | T255                       | C255                       | R3839                                                | R3903                                                                                   | R3967                                                 | R4167                                    | R8071                                                                 | D4095                                | or<br>16 3                   | <br>32              | P0~P9                     |           |
| ļ | D                                                      |                                       | $\bigcirc$                                         | 0                                                                                                           | 0                               | $\bigcirc$                 | 0                          | 0                                                    |                                                                                         | 0                                                     | •                                        | ○*                                                                    | 0                                    |                              |                     | $\bigcirc$                |           |
|   | Ν                                                      | $\bigcirc$                            | $\bigcirc$                                         | $\bigcirc$                                                                                                  | $\bigcirc$                      | $\bigcirc$                 | $\bigcirc$                 | $\bigcirc$                                           | $\bigcirc$                                                                              | $\bigcirc$                                            | $\bigcirc$                               | $\bigcirc$                                                            | $\bigcirc$                           | $\bigcirc$                   |                     | $\bigcirc$                |           |
| • | left, its pos<br>will appea<br>If the ope<br>Beyond th | r at shi<br>rand is                   | ift-out t<br>s 16 bi                               | oit "OTB"<br>t, the eff                                                                                     | ective                          | range                      | of N                       | is 1~ <sup>-</sup>                                   | 16. Foi                                                                                 | r 32 bi                                               | its(D                                    | instru                                                                | ction)                               | operan                       | nd, i               |                           |           |
| • | will appea<br>If the ope                               | r at sh<br>rand is<br>is rang         | ift-out k<br>s 16 bi<br>ge, will                   | bit "OTB"<br>t, the eff<br>set the N<br>SHFL<br>R 0                                                         | ective                          | range<br>error 1<br>Y<br>( | of N                       | is 1~⁺<br>ERR" ti<br>● The<br>tow                    | he sta<br>16. Foi<br>o 1, an                                                            | r 32 bi<br>d do n<br>uction<br>he left                | its(D<br>ot carr<br>at lef               | instru<br>y out t<br>t shift                                          | ction)<br>his ins<br>s the           | operan                       | nd,i<br>n.<br>in re | t is 1~                   | 32.<br>R0 |
| • | will appea<br>If the ope<br>Beyond th                  | r at sh<br>rand is<br>is rang<br>—EN↑ | ift-out t<br>s 16 bi<br>ge, will                   | bit "OTB"<br>t, the eff<br>set the N<br>SHFL<br>R 0                                                         | ective<br>value<br>-OTB<br>-ERR | range<br>error 1<br>(      | of N<br>flag "f<br>70<br>) | is 1~⁺<br>ERR" ti<br>● The<br>tow                    | the star<br>16. For<br>o 1, an<br>e instru-<br>vards t<br>vards t<br>vards t<br>vards t | r 32 bi<br>d do n<br>uction<br>he left<br>low.        | its(D<br>ot carr<br>at lef<br>t by 4     | instru<br>y out t<br>t shift<br>succe                                 | ction)<br>his ins<br>s the           | operan<br>truction<br>data i | nd,i<br>n.<br>in re | t is 1~                   | 32.<br>R0 |
| • | will appea<br>If the ope<br>Beyond th                  | r at sh<br>rand is<br>is rang<br>—EN↑ | ift-out t<br>s 16 bi<br>ge, will<br>D : F<br>N : 4 | bit "OTB"<br>t, the eff<br>set the N<br>SHFL<br>$\sim$ 0<br>4<br>$\approx 0$<br>4<br>= 15<br>$\leftarrow 0$ | ective<br>value<br>-OTB<br>-ERR | range<br>error 1<br>Y<br>( | of N<br>flag "f<br>70<br>) | is 1~ <sup>-</sup><br>ERR" ti<br>● The<br>tow<br>sho | the star<br>16. For<br>o 1, an<br>e instru-<br>vards t<br>vards t<br>vards t<br>vards t | r 32 bi<br>d do n<br>uction<br>he left<br>low.<br>1 0 | its ( D<br>ot carr<br>at lef<br>t by 4   | instru<br>y out t<br>t shift<br>succe<br>30<br>$0 \leftarrow 30$<br>1 | ction)<br>his ins<br>s the<br>essive | operan<br>truction<br>data i | nd,i<br>n.<br>in re | t is 1~                   | 32.<br>R0 |


| FUN 52 D P<br>SHFR                                          |                                                                                                                                                                                                       | SHIFT RIGHT                                                                                                   |                                                                                            |                                       |                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |                                                         |                                                                                      |                                                           |                                                                                   |                                   |                                           | 52 <b>D P</b><br>HFR                        |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|---------------------------------------------|
|                                                             | Ladder symbol       D: Register to be shifted         Shift control – $EN^{\uparrow}$ D:         N:       OTB – Shift-out bit         N:       N         Shift in bit – INB       ERR – N value error |                                                                                                               |                                                                                            |                                       |                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |                                                         |                                                                                      | shifted<br>V, Z, P0                                       | )~P9 tc                                                                           | ) serve                           |                                           |                                             |
| R<br>Ope-<br>rand<br>D<br>N                                 |                                                                                                                                                                                                       | WY<br>WY0<br> <br>WY240<br>〇                                                                                  | WM<br>WM0<br>WM1896                                                                        | WS<br>WS0<br> <br>WS984<br>           | <b>то</b><br>                                  | CTR<br>C0<br><br>C255<br>O                     | HR<br>R0<br> <br>R3839<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |                                                         | SR<br>R3968<br> <br>R4167<br>*                                                       |                                                           | DR<br>D0<br> <br>D4095<br>〇                                                       | K<br>1 1<br>16 32                 | XR<br>V · Z<br>P0~P9                      |                                             |
| register<br>instruction<br>B0 will a<br>If the op<br>Beyond | )<br> EN↑- [<br> <br> <br> <br> <br> <br> <br> <br>                                                                                                                                                   | e right<br>een shi<br>hift-out<br>6 bit, t<br>will set<br>52P.SHF<br>D : R<br>N : 15<br>NB<br>0 $\rightarrow$ | by N su<br>ifted righ<br>bit "OTE<br>he effect<br>the N v<br>=R<br>0<br>B15<br>B15<br>1_0* | ccessi<br>nt, thei<br>5".<br>ctive ra | ve bits<br>r posit<br>inge o<br>rror fla<br>Y0 | (in d<br>ions )<br>f N is<br>g "ER<br>)<br>1 0 | escer<br>will be<br>$1 \sim 10^{\circ}$<br>$R^{\circ}$ to<br>$R^{\circ}$ to | <ul> <li>b. For</li> <li>and</li> <li>and</li> <li>b. The tow rest</li> </ul> | 32 bi<br>32 bi<br>d do n<br>e instru<br>ards<br>ults ar | After<br>by the<br>ts ( Interpretention<br>of carrier<br>uction<br>the ri-<br>e show | the h<br>shift-in<br>ry out<br>at left<br>ght b<br>wn bel | ighest<br>n bit IN<br>uction)<br>this ins<br>shifts f<br>y 15<br>ow.<br>Y0<br>≻ □ | bits, B15<br>NB, while<br>operanc | 5 or B3<br>shift-c<br>I, it is<br>in R0 r | 1 ( <b>D</b><br>out bit<br>1∼32.<br>egister |
|                                                             | [                                                                                                                                                                                                     | <b>NB</b><br>0<br>△                                                                                           | B15<br>0 0<br>△ △                                                                          | <b>0 0</b> △                          |                                                | 0 0                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |                                                         | 0 0                                                                                  | B0<br>1                                                   | Y0<br>0<br>*                                                                      |                                   |                                           |                                             |



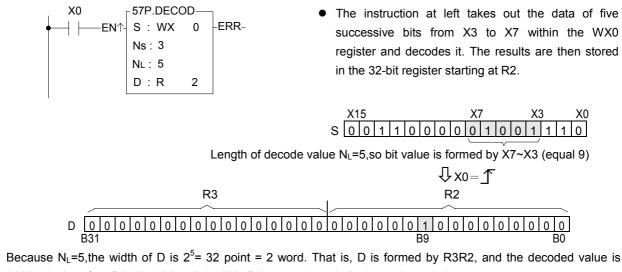
| FUN 54 D P<br>ROTR                                       |                                                                                                                                                                                                                                                                                                                           | ROTATE RIGHT                                                                                         |                                            |                                                    |                                                             |                                                                 |                                                                  |                                               |                                                                      |                                                                       |                                                              |                                                       | FUN 54 D P<br>ROTR                                                           |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|
| Rotate contro                                            | Ladder symbol       D: Register to be rotated         Rotate control – ENT – D:       D: Register to be rotated         N:       OTB – Rotate-out-bit       N: Number of bits to be rotated         D, N may combine with V, Z, Prinder address application       D, N may combine with V, Z, Prinder address application |                                                                                                      |                                            |                                                    |                                                             |                                                                 |                                                                  |                                               |                                                                      |                                                                       | otated<br>, Z, P0-                                           | -P9 to serve                                          |                                                                              |
| Ope-<br>rand<br>D<br>N                                   | e WX WY<br>WX0 WY0<br>WX240 WY240<br>0<br>0                                                                                                                                                                                                                                                                               | WM<br>WM0<br>WM1896<br>O                                                                             | WS<br>WS0<br>WS984<br>O                    | TMR<br>T0<br> <br>T255<br>〇<br>〇                   | CTR<br>C0<br> <br>C255<br>()<br>()                          | HR<br>R0<br>-<br>R3839<br>O<br>O                                |                                                                  |                                               | SR<br>R3968<br> <br>R4167<br>*                                       |                                                                       |                                                              | or                                                    | XR           1         V \ Z           2         P0~P9           O         O |
| D registe<br>B14→B1<br>the same<br>If the op<br>Beyond f | tate control "E<br>er towards the<br>13,, B1 $\rightarrow$ B<br>e time, the stat<br>erand is 16 b<br>this range, will<br>$0 \\ \vdash EN\uparrow D = N$                                                                                                                                                                   | right by N<br>0, B0 $\rightarrow$ B<br>us of the r<br>it, the effe<br>set the N<br>P.ROTR —<br>: R 0 | l succe<br>15. In a<br>rotated<br>ective r | essive<br>a 32-bit<br>out B(<br>range<br>error fl: | bits (ir<br>t instru<br>) bits v<br>of N is<br>ag "EF<br>Y0 | n descr<br>uction,<br>vill app<br>s 1~16<br>RR" to<br>• T<br>tr | ending<br>B31→<br>bear at<br>. For<br>1, and<br>The ins<br>pward | g order<br>B30,<br>the rc<br>32 bits<br>do nc | r, ie. ir<br>B30→<br>otate-o<br>s ( <b>D</b><br>ot carry<br>on at le | n a 16<br>B29, .<br>ut bit '<br>instruc<br>out th<br>eft rot<br>succe | -bit ins<br>, B1<br>'OTB".<br>ction) (<br>his inst<br>ates d | truction<br>→B0, E<br>operand<br>ruction.<br>ata fror | l, B15→B14,<br>30→B31). At<br>d, it is 1~32.                                 |
|                                                          |                                                                                                                                                                                                                                                                                                                           | B15<br>1 1<br>B15<br>1 0<br>*                                                                        | ) 1 0                                      | 000                                                | 0 0<br>ر                                                    | 10<br>*<br>0= <b>1</b>                                          |                                                                  |                                               | Y0                                                                   |                                                                       |                                                              |                                                       |                                                                              |



| FUN55 D P<br>B→G | BINARY - CODE TO GRAY - CODE CONVERSION                                                                                                                                    | FUN55 <b>D P</b><br>B→G |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Example 2: W     | nen M0 =1, it will be perform the 32-bit code conversion                                                                                                                   |                         |
|                  | M0<br>$i$ EN $\begin{bmatrix} 55DP.B \rightarrow G \\ S : R0 \\ D : R100 \end{bmatrix}$ • Converting the 32-bit Binary-code in DR0 and then storing the result into DR100. | into Gray-code,         |
| DR0=0011         | 0111001001000010111100010100B → DR100=00101100101101100011100                                                                                                              | 010011110B              |
|                  |                                                                                                                                                                            |                         |
|                  |                                                                                                                                                                            |                         |
|                  |                                                                                                                                                                            |                         |
|                  |                                                                                                                                                                            |                         |
|                  |                                                                                                                                                                            |                         |
|                  |                                                                                                                                                                            |                         |
|                  |                                                                                                                                                                            |                         |
|                  |                                                                                                                                                                            |                         |
|                  |                                                                                                                                                                            |                         |

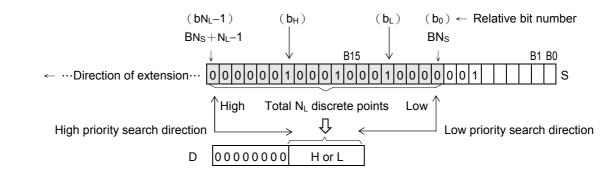


Г

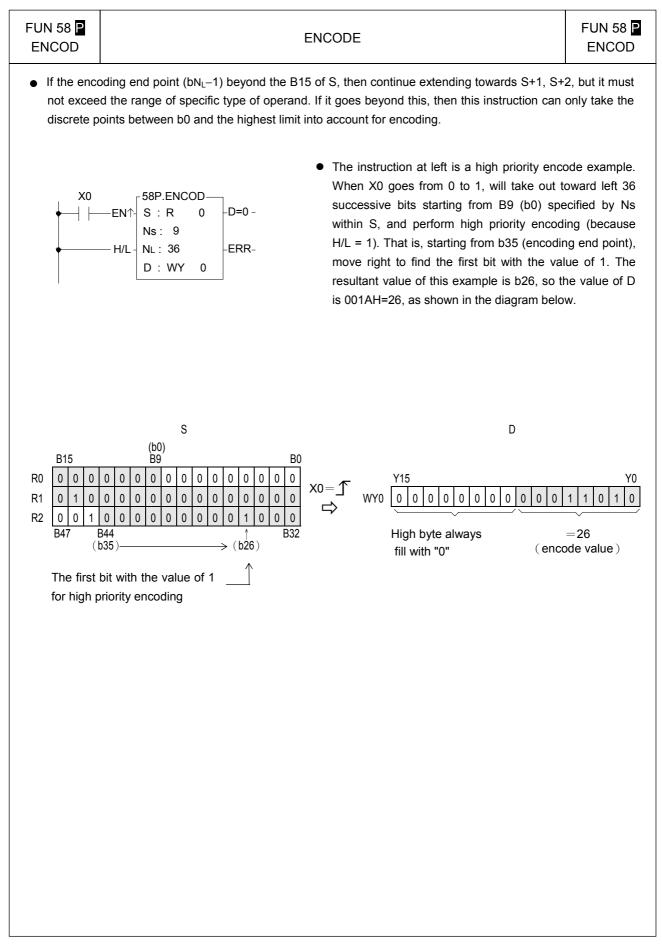

| FUN56 D P<br>G→B | GRAY - CODE TO BINARY - CODE CONVERSION                                                                                                           | FUN56 <b>D P</b><br>G→B |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Example 2: V     | Vhen M0 =1, it will perform the 32-bit code conversion                                                                                            |                         |
|                  | M0<br>$\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ |                         |
| DD0=00110        | 011100100100010111100010100B → DD100=0010010111000111110010100                                                                                    | 0011000B                |
|                  |                                                                                                                                                   |                         |
|                  |                                                                                                                                                   |                         |
|                  |                                                                                                                                                   |                         |
|                  |                                                                                                                                                   |                         |
|                  |                                                                                                                                                   |                         |
|                  |                                                                                                                                                   |                         |
|                  |                                                                                                                                                   |                         |

-

| FUN 57 P<br>DECOD |         |                   |      | D   | ECOD    | E   |                                                        |                                            |                                    |                              |                                                            | FUN 57 P<br>DECOD                 |
|-------------------|---------|-------------------|------|-----|---------|-----|--------------------------------------------------------|--------------------------------------------|------------------------------------|------------------------------|------------------------------------------------------------|-----------------------------------|
| Decode contro     | - 57P.D | er symbol<br>ECOD | -ERI | R—R | ange er | ror | (<br>N <sub>S</sub> : S<br>N <sub>L</sub> : L<br>D : S | 16 bits<br>starting<br>ength o<br>starting | )<br>bits to<br>of deco<br>registe | be dec<br>ded va<br>r storir | co be dec<br>coded wi<br>ilue (1~6<br>ng decoo<br>i words) | ithin S<br>3 bits)<br>ded results |
| Banga             |         | 4                 |      |     | LID     |     |                                                        |                                            |                                    |                              | with V,<br>applicatio                                      | Z, P0~P9<br>on                    |

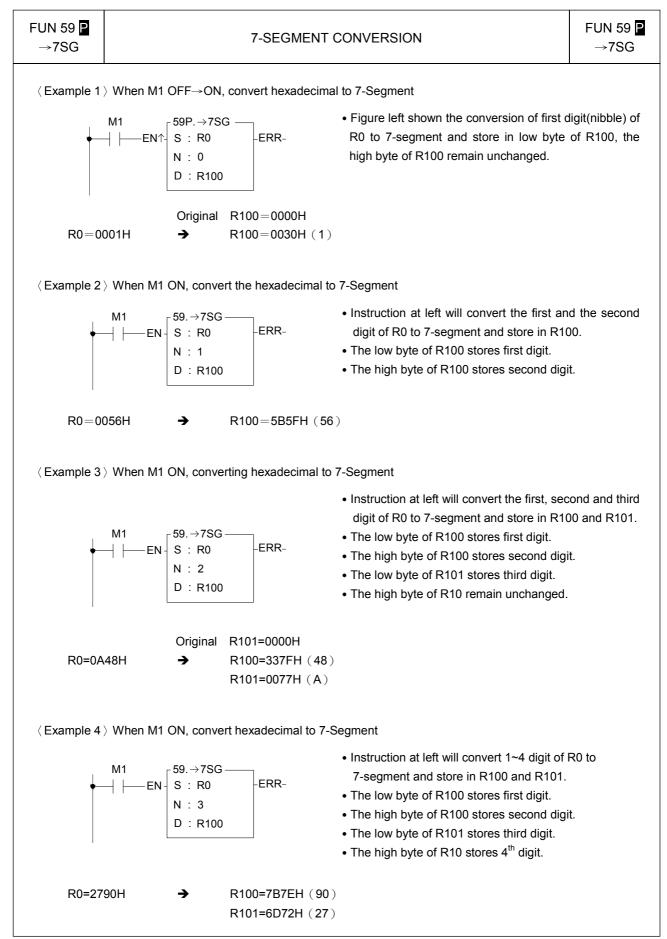

| Range        | WX                | WY                | WM                 | WS                | TMR             | CTR             | HR               | IR                  | OR                  | SR                  | ROR                 | DR               | К                    | XR             |
|--------------|-------------------|-------------------|--------------------|-------------------|-----------------|-----------------|------------------|---------------------|---------------------|---------------------|---------------------|------------------|----------------------|----------------|
| Ope-<br>rand | WX0<br> <br>WX240 | WY0<br> <br>WY240 | WM0<br> <br>WM1896 | WS0<br> <br>WS984 | T0<br> <br>T255 | C0<br> <br>C255 | R0<br> <br>R3839 | R3840<br> <br>R3903 | R3904<br> <br>R3967 | R3968<br> <br>R4167 | R5000<br> <br>R8071 | D0<br> <br>D4095 | 16-bit<br>+/- number | V \ Z<br>P0~P9 |
| S            | 0                 | 0                 | 0                  | 0                 | 0               | 0               | 0                | 0                   | 0                   | 0                   | 0                   | $\bigcirc$       | 0                    | 0              |
| Ns           | 0                 | 0                 | 0                  | 0                 | $\bigcirc$      | 0               | 0                | 0                   | $\bigcirc$          | 0                   | 0                   | 0                | 0~15                 | 0              |
| NL           | 0                 | 0                 | 0                  | 0                 | $\bigcirc$      | 0               | 0                | 0                   | 0                   | 0                   | 0                   | 0                | 1~8                  | 0              |
| D            |                   | $\bigcirc$        | $\bigcirc$         | $\bigcirc$        | $\bigcirc$      | 0               | $\bigcirc$       |                     | $\bigcirc$          | <b>O*</b>           | <b>O*</b>           | $\bigcirc$       |                      | $\bigcirc$     |

- This instruction, will set a single bit among the total of 2<sup>NL</sup> discrete points (D) to 1 and the others bit are set to 0. The bit number to be set to 1 is specified by the value comprised by BN<sub>S</sub>~BN<sub>S</sub>+N<sub>L</sub>-1 of S (which is called the decode value, BN<sub>S</sub> is the starting bit of the decode value, and BN<sub>S</sub>+N<sub>L</sub>-1 is the end value),.
- When decode control "EN" = 1 or "EN ↑ " ( P instruction) has a transition from 0 to 1, will take out the value BN<sub>S</sub>~BN<sub>S</sub>+N<sub>L</sub>-1 from S. And with this value to locate the bit position and set D accordingly, and set all the other bit to zero
- This instruction only provides 16 bit operand, which means S only has B0~B15. Therefore the effective range of Ns is 0~15, and the N<sub>L</sub> length of the decode value is limited to 1~8 bits. Therefore the width of the decoded result D is  $2^{1-8}$  points = 2~256 points = 1~16 words (if 16 points are not sufficient, 1 word is still occupied). If the value of N<sub>S</sub> or N<sub>L</sub> is beyond the above range, will set the range-error flag "ERR" to 1, and do not carry out this instruction.
- If the end bit value exceeds the B15 of S, then will extend toward B0 of S + 1. However if this occurs then S+1 can't exceed the range of specific type of operand (ie. If S is of D type register then S+1 can't be D3072). If violate this, then this instruction only takes out the bits from starting bit BNs to its highest limit as the decode value.




| FUN 58 P<br>ENCOD                                                          |                   | ENCODE            |                    |                   |                                                                                                                                                                                                                                                                                                                                                                                         |                 |                  |                     |                     |                     |                     |                  |                         | FUN 58 P<br>ENCOD |  |
|----------------------------------------------------------------------------|-------------------|-------------------|--------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|---------------------|---------------------|---------------------|---------------------|------------------|-------------------------|-------------------|--|
| Encode control $-EN^{-}$<br>High/Low priority $-H/L$ $-$<br>$N_L$ :<br>D : |                   |                   |                    |                   | <ul> <li>S : Starting register to be encoded</li> <li>N<sub>S</sub> : Bit position within S as the encoding start point</li> <li>N<sub>L</sub> : Number of encoding discrete points (2~256)</li> <li>D : Number of register storing encoding results (1 word)</li> <li>S, N<sub>S</sub>, N<sub>L</sub>, D may combine with V, Z, P0~P9 to serve indirect address application</li> </ul> |                 |                  |                     |                     |                     |                     |                  |                         |                   |  |
| Range                                                                      | WX                | WY                | WM                 | WS                | TMR                                                                                                                                                                                                                                                                                                                                                                                     | CTR             | HR               | IR                  | OR                  | SR                  | ROR                 | DR               | К                       | XR                |  |
| Ope-<br>rand                                                               | WX0<br> <br>WX240 | WY0<br> <br>WY240 | WM0<br> <br>WM1896 | WS0<br> <br>WS984 | T0<br> <br>T255                                                                                                                                                                                                                                                                                                                                                                         | C0<br> <br>C255 | R0<br> <br>R3839 | R3840<br> <br>R3903 | R3904<br> <br>R3967 | R3968<br> <br>R4167 | R5000<br> <br>R8071 | D0<br> <br>D4095 | 16-bit<br>+/-<br>number | V \ Z<br>P0~P9    |  |
| S                                                                          | 0                 | 0                 | 0                  | 0                 | $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                              | $\bigcirc$      | 0                | 0                   | 0                   | 0                   | 0                   | 0                |                         | 0                 |  |
| Ns                                                                         | $\bigcirc$        | 0                 | 0                  | 0                 | $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                              | 0               | 0                | 0                   | 0                   | 0                   | 0                   | 0                | 0~15                    | 0                 |  |
|                                                                            | $\cap$            | $\bigcirc$        | 0                  | $\bigcirc$        | 0                                                                                                                                                                                                                                                                                                                                                                                       | $\bigcirc$      | $\bigcirc$       | $\bigcirc$          | 0                   | 0                   | 0                   | 0                | 2~256                   | 0                 |  |
| NL                                                                         | $\bigcirc$        | 0                 | $\bigcirc$         | 0                 | · ·                                                                                                                                                                                                                                                                                                                                                                                     |                 |                  |                     |                     |                     |                     | -                |                         | 0                 |  |

When encode control "EN" = 1 or "EN ↑" ( instruction) has a transition from 0 to 1, will starting from the points specified by Ns within S, take out towards the left (high position direction) N<sub>L</sub> number of successive bits BN<sub>S</sub>~BN<sub>S</sub>+N<sub>L</sub>-1 (BN<sub>S</sub> is called the encoding start point, and its relative bit number is b0;BN<sub>S</sub>+N<sub>L</sub>-1 is called the encoding end point, and its relative bit number is BN<sub>L</sub>-1). From left to right do higher priority (when H/L=1) encoding or from right to left do lower priority (when H/L=0) encoding (i.e. seek the first bit with the value of 1, and the relative bit number of this point will be stored into the low byte (B0~B7) of encoded resultant register D, and the high byte of D will be filled with 0.

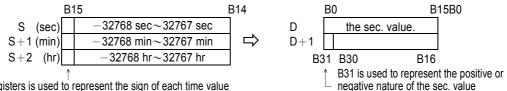



- As shown in the diagram above, for high priority encoding, the bit first to find is b<sub>H</sub> (with a value of 12), and for low priority encoding, the bit first to find b<sub>L</sub> (with a value of 4). Among the N<sub>L</sub> discrete points there must be at least one bit with value of 1. If all bits are 0, will not to carry out this instruction, and the all zero flag "D=0" will set to 1.
- Because S is a 16-bit register, Ns can be 0~15, and is used to assign a point of B0~B15 within S as the encoding start point (b0). The value of N<sub>L</sub> can be 2~256, and it is used to identify the encoding end point, i.e. it assigns N<sub>L</sub> successive single points starting from the start point (b0) towards the left (high position direction) as the encoding zone (i.e.  $b0 \sim bN_L-1$ ). If the value of Ns or NL exceeds the above value, then do not carry out this instruction, and set the range-error flag "ERR" as 1.



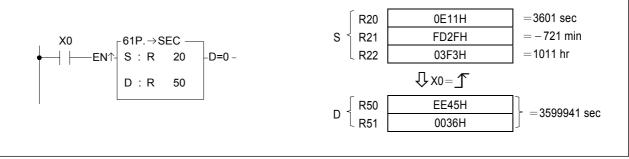
| <sup>-</sup> UN 59 <mark>P</mark><br>→7SG        |                   | 7-SEGMENT CONVERSION                                                                                                               |                     |                         |                   |                   |                  |                                 |                           |                      |                       | FUN 59<br>→7SC    |                    |                      |
|--------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|-------------------|-------------------|------------------|---------------------------------|---------------------------|----------------------|-----------------------|-------------------|--------------------|----------------------|
| Ladder symbol<br>S : Source data to be converted |                   |                                                                                                                                    |                     |                         |                   |                   |                  |                                 |                           |                      | ted                   |                   |                    |                      |
| onversion cont                                   | rol — EN          |                                                                                                                                    | S :                 |                         | -ER               | R – N             | l value e        | error N                         | I: The                    | nibble ı             | numbei                | r within          | S for co           | nversion             |
|                                                  |                   | 1                                                                                                                                  | N :                 |                         |                   |                   |                  | D                               | ) : Regi                  | ster sto             | oring 7-              | segme             | nt result          |                      |
|                                                  |                   | N :       D : Register storing 7-segment result         D :       S, N, D may combine with V, Z,P0~P9 indirect address application |                     |                         |                   |                   |                  |                                 |                           |                      |                       |                   |                    |                      |
|                                                  |                   |                                                                                                                                    | D :                 |                         |                   |                   |                  |                                 |                           | •                    |                       |                   | Z,P0~P             | 9 to serve           |
| Range                                            | WX                | WY                                                                                                                                 | D :                 | WS                      | TMR               | CTR               | HR               |                                 |                           | •                    |                       |                   | Z,P0~P             | 9 to serve           |
| Range<br>Ope-<br>rand                            | WX0<br>           | WY<br>WY0                                                                                                                          |                     | WS<br>WS0<br> <br>WS984 | TMR<br>T0<br>1255 | CTR<br>C0<br>C255 | R0               | ir                              | ndirect                   | address              | s applic              | cation            |                    |                      |
| Ope-                                             | WX0<br>           | WY<br>WY0                                                                                                                          | WM<br>WMO           | WS0                     | <b>Т0</b><br>     | C0                | R0               | ir<br>IR<br>R3840<br>           | OR<br>R3904               | SR<br>R3968          | ROR<br>R5000          | DR<br>D0          | K<br>16-bit<br>+/- | XR<br>V · Z          |
| Ope-<br>rand                                     | WX0<br> <br>WX240 | WY<br>WY0<br>WY240                                                                                                                 | WM<br>WM0<br>WM1896 | WS0<br> <br>WS984       | T0<br> <br>T255   | C0<br> <br>C255   | R0<br> <br>R3839 | ir<br>IR<br>R3840<br> <br>R3903 | OR<br>R3904<br> <br>R3967 | SR<br>R3968<br>R4167 | ROR<br>R5000<br>R8071 | DR<br>D0<br>D4095 | K<br>16-bit<br>+/- | XR<br>V \ Z<br>P0~P9 |

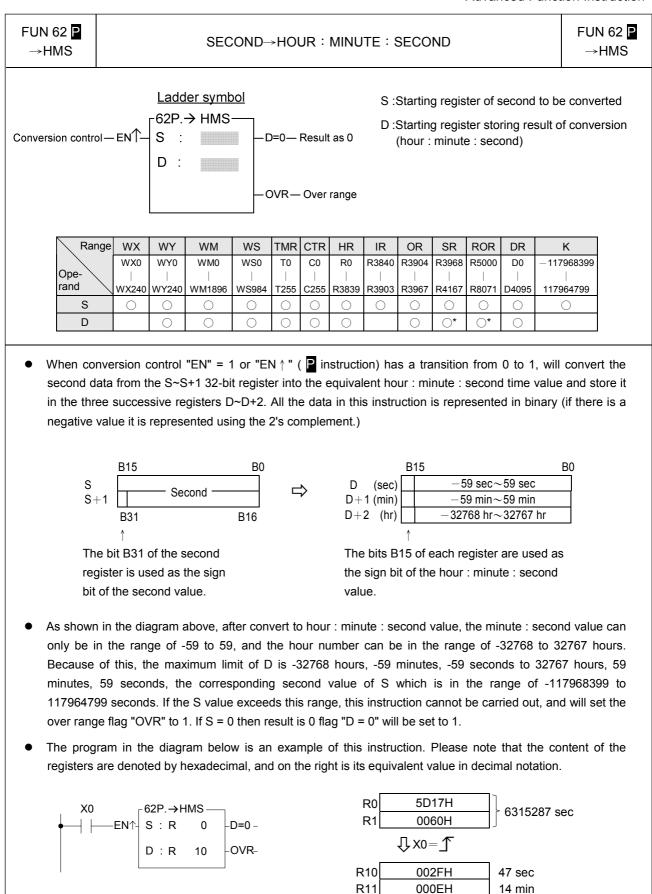
- When conversion control "EN" = 1 or "EN ↑" ( instruction) has a transition from 0 to 1, will convert N+1 number of nibbles (A nibble is comprised by 4 successive bits, so B0~B3 of S form nibble 0, B4~B7 form nibble 1, etc...) within S to 7-segment code, and store the code into a low byte of D (High bytes does not change). The 7 segment within D are put in sequence, with "a" segment placed at B6, "b" segment at B5, ...., "g" segment at B0. B7 is not used and is fixed as 0. For details please refer the "7-segment code and display pattern table" shown in page 9-31.
- Because this instruction is limited to 16 bits, and S only has 4 nibbles (NB0~NB3), the effective range of N is 0~3. Beyond this range, will set the N value flag error "ERR" to 1, and does not carry out this instruction.
- Care should be taken on total nibbles to be converted is N+1. N=0 means one digit to convert, N=1 means two digits to convert etc...
- When using the FATEK 7-segment expansion module(FBs-7SG) and the FUN84 (7SEG) handy instruction for mixing decoding and non-decoding application, FUN59 and FUN84 can be combined to simplify the program design.(Please refer the example in chapter 16)




| FUN 59 <b>₽</b><br>→7SG |                  | 7-SEGMENT CONVERSION   |         |         |         |         |          |         |         |         |                    |  |
|-------------------------|------------------|------------------------|---------|---------|---------|---------|----------|---------|---------|---------|--------------------|--|
| Nibble da               | ita of S         | - 7-segment            |         |         | 1       | _ow by  | rte of D | )       |         |         | Display            |  |
| Hexadecimal<br>number   | Binary<br>number | display format         | B7<br>● | B6<br>a | B5<br>b | B4<br>c | B3<br>d  | B2<br>e | B1<br>f | B0<br>g | Display<br>pattern |  |
| 0                       | 0000             |                        | 0       | 1       | 1       | 1       | 1        | 1       | 1       | 0       |                    |  |
| 1                       | 0001             |                        | 0       | 0       | 1       | 1       | 0        | 0       | 0       | 0       | 0<br>0             |  |
| 2                       | 0010             |                        | 0       | 1       | 1       | 0       | 1        | 1       | 0       | 1       |                    |  |
| 3                       | 0011             |                        | 0       | 1       | 1       | 1       | 1        | 0       | 0       | 1       |                    |  |
| 4                       | 0100             | B6<br>a                | 0       | 0       | 1       | 1       | 0        | 0       | 1       | 1       | Ļ                  |  |
| 5                       | 0101             | B1 f b B5              | 0       | 1       | 0       | 1       | 1        | 0       | 1       | 1       | 5                  |  |
| 6                       | 0110             | B2 e c B4<br>d B3 P B7 | 0       | 1       | 0       | 1       | 1        | 1       | 1       | 1       | 6                  |  |
| 7                       | 0111             | вз С                   | 0       | 1       | 1       | 1       | 0        | 0       | 1       | 0       |                    |  |
| 8                       | 1000             |                        | 0       | 1       | 1       | 1       | 1        | 1       | 1       | 1       |                    |  |
| 9                       | 1001             |                        | 0       | 1       | 1       | 1       | 1        | 0       | 1       | 1       |                    |  |
| А                       | 1010             |                        | 0       | 1       | 1       | 1       | 0        | 1       | 1       | 1       | A                  |  |
| В                       | 1011             |                        | 0       | 0       | 0       | 1       | 1        | 1       | 1       | 1       |                    |  |
| С                       | 1100             |                        | 0       | 1       | 0       | 0       | 1        | 1       | 1       | 0       |                    |  |
| D                       | 1101             |                        | 0       | 0       | 1       | 1       | 1        | 1       | 0       | 1       |                    |  |
| E                       | 1110             |                        | 0       | 1       | 0       | 0       | 1        | 1       | 1       | 1       | Ē                  |  |
| F                       | 1111             |                        | 0       | 1       | 0       | 0       | 0        | 1       | 1       | 1       | F                  |  |

|                                             |                                                                                                                                                                                                                                                                                                                                             |                                                      |                                              |                                       |                                         |                                           |                               |                                   | ŀ                                  | Advanc                             | ed Funct                           | ion Instruct                                                  | tion |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|---------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------------------------------------------------|------|
| FUN 60 ₽<br>→ASC                            |                                                                                                                                                                                                                                                                                                                                             |                                                      |                                              | AS                                    |                                         | ONVE                                      | RSION                         |                                   |                                    |                                    |                                    | FUN 60<br>→ASC                                                |      |
| Conversion con                              | $\begin{array}{c} Ladder \ symbol \\ \hline 60P. \rightarrow ASC \\ S : \\ \hline S : \\ D : \\ \hline \end{array} \\ \hline D : \\ \hline \end{array} \\ \hline \end{array} \\ \hline S : Alphanumerics to be converted into ASCII code \\ \hline D : Starting register storing ASCII results \\ \hline \end{array} \\ \hline \end{array}$ |                                                      |                                              |                                       |                                         |                                           |                               |                                   |                                    |                                    |                                    |                                                               |      |
|                                             | ange WY                                                                                                                                                                                                                                                                                                                                     | WM                                                   | WS                                           | TMR                                   | CTR                                     | HR                                        | OR                            | SR                                | ROR                                | DR                                 | Alphanun                           | neric                                                         |      |
| Ope-<br>rand                                | WY0<br> <br> <br> <br> <br> <br> <br> <br>                                                                                                                                                                                                                                                                                                  | WM0                                                  | WS0<br> <br>WS984                            | T0<br> <br>T255                       | C0<br> <br>C255                         | R0<br> <br>R3839                          | R3904<br> <br>R3967           | R3968<br> <br>R4167               | R5000<br> <br>R8071                | D0<br> <br>D4095                   | 1~12<br>alphanun                   | !                                                             |      |
|                                             |                                                                                                                                                                                                                                                                                                                                             |                                                      |                                              |                                       |                                         |                                           |                               | *                                 | *                                  |                                    | 0                                  |                                                               |      |
|                                             | 0                                                                                                                                                                                                                                                                                                                                           | 0                                                    | 0                                            | 0                                     | 0                                       | 0                                         | 0                             | ○*                                | ○*                                 | 0                                  |                                    |                                                               |      |
| alphab<br>it into r<br>• The ap<br>until ce | ets and nur<br>egisters sta<br>plication of                                                                                                                                                                                                                                                                                                 | nbers stor<br>rting from<br>this instru<br>tions occ | red in S<br>D. Eacl<br>uction, n<br>ur, then | (S has<br>h 2 alp<br>nost of<br>conve | s a ma<br>hanum<br>ten, sto<br>erts thi | ximum<br>heric cha<br>bres alp<br>s alpha | of 12 al<br>aracters<br>hanum | phanun<br>s occup<br>eric info    | neric ch<br>y one 1<br>ormatior    | iaracter<br>6-bit reoุ<br>า within | ) into ASC<br>gister.<br>a prograr | will convert<br>CII and store<br>n, and waits<br>onveys it to | :    |
| ×(                                          | ⊢EN↑- \$                                                                                                                                                                                                                                                                                                                                    | 0P.→ASC<br>S : ABCD<br>D : R0                        |                                              | R-                                    |                                         | -4                                        | BCDE                          |                                   | SCII th                            | en stor                            |                                    | 6 alphabets<br>8 successive                                   |      |
|                                             |                                                                                                                                                                                                                                                                                                                                             |                                                      | S<br>abet<br>DEF                             |                                       | X0=_]<br>⊏>                             |                                           | R0 42<br>R1 44                | h Byte<br>2 (B)<br>4 (D)<br>6 (F) | D<br>Low E<br>41 (<br>43 (<br>45 ( | A)<br>C)                           |                                    |                                                               |      |


| FUN 61 ₽<br>→SEC | HOUR:MINUTE:SECOND TO SECONDS CONVERSION FUN 61 ☐<br>→SEC                                                                                                                                      |     |             |        |       |          |      |       |       |       |            |       |       |           |   |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|--------|-------|----------|------|-------|-------|-------|------------|-------|-------|-----------|---|
| Conversion cont  | $\begin{array}{c} Ladder \ symbol \\ 61P. \rightarrow SEC \\ S : \\ D : \\ D : \\ \end{array} \qquad D = 0 - Result as 0 \\ D : \\ S = Starting \ register \ storing \ results \\ \end{array}$ |     |             |        |       |          |      |       |       |       |            | o be  |       |           |   |
| Ra               | ange                                                                                                                                                                                           | WX  | WY          | WM     | WS    | TMR      | CTR  | HR    | IR    | OR    | SR         | ROR   | DR    | К         |   |
|                  |                                                                                                                                                                                                | WX0 | WY0         | WM0    | WS0   | Т0       | C0   | R0    | R3840 | R3904 | R3968      | R5000 | D0    | -11796839 | 9 |
| Ope-             | $\backslash$                                                                                                                                                                                   |     | <br> ///240 | WM1906 | W6004 | <br>T255 | C255 | 02020 | D2002 | D2067 | D4167      | D9071 | 04005 | 117064700 |   |
| S                | rand WX240 WY240 WM1896 WS984 T255 C255 R3839 R3903 R3967 R4167 R8071 D4095 117964799                                                                                                          |     |             |        |       |          |      |       |       |       | <u></u>    |       |       |           |   |
| D                |                                                                                                                                                                                                |     |             |        |       |          |      |       |       |       |            |       |       |           |   |
|                  |                                                                                                                                                                                                |     | U           | 0      | 0     | $\cup$   | U    | 0     |       | U     | $\bigcirc$ | U     | 0     |           |   |


- When conversion control "EN" = 1 or "EN ↑ " ( P instruction) has a transition from 0 to 1, will convert the hour: minute: second data of S~S+2 into an equivalent value in seconds and store it into the 32-bit register formed by combining D and D+1. If the result = 0, then set the "D = 0" flag as 1.
- Among the FBs-PLC instructions, the hour: minute: second time related instructions (FUN61 and 62) use 3 words of register to store the time data, as shown in the diagram below. The first word is the second register, the second word is the minute register, and finally the third word is the hour register, and in the 16 bits of each register, only B14~B0 are used to represent the time value. While bit B15 is used to express whether the time values are positive or negative. When B15 is 0, it represents a positive time value, and when B15 is 1 it represents a negative time value. The B14~B0 time value is represented in binary, and when the time value is negative, B14~B0 is represented with the 2's complement. The number of seconds that results from this operation is the result of summation of seconds from the three registers representing hours: minutes: seconds.

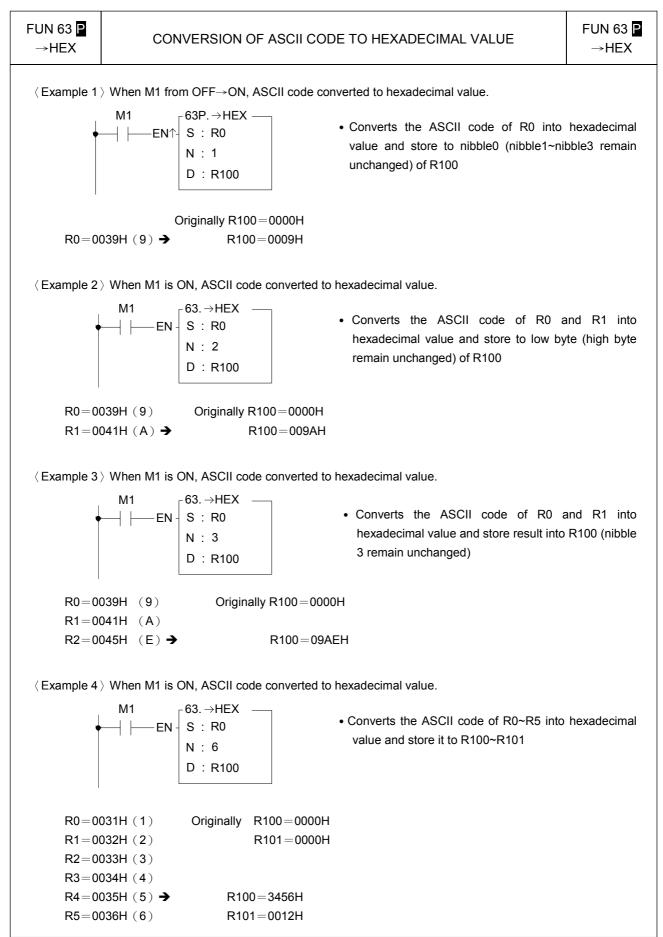


The B15 of each registers is used to represent the sign of each time value

- Besides FUN61 or 62 instruction which treat hour: minute: second registers as an integral data, other instructions treat it as individual registers.
- The example program at below converts the hour: minute: second data formed by R20~R22 into their equivalent value in seconds then stored in the 32-bit register formed by R50~R51. The results are shown below.

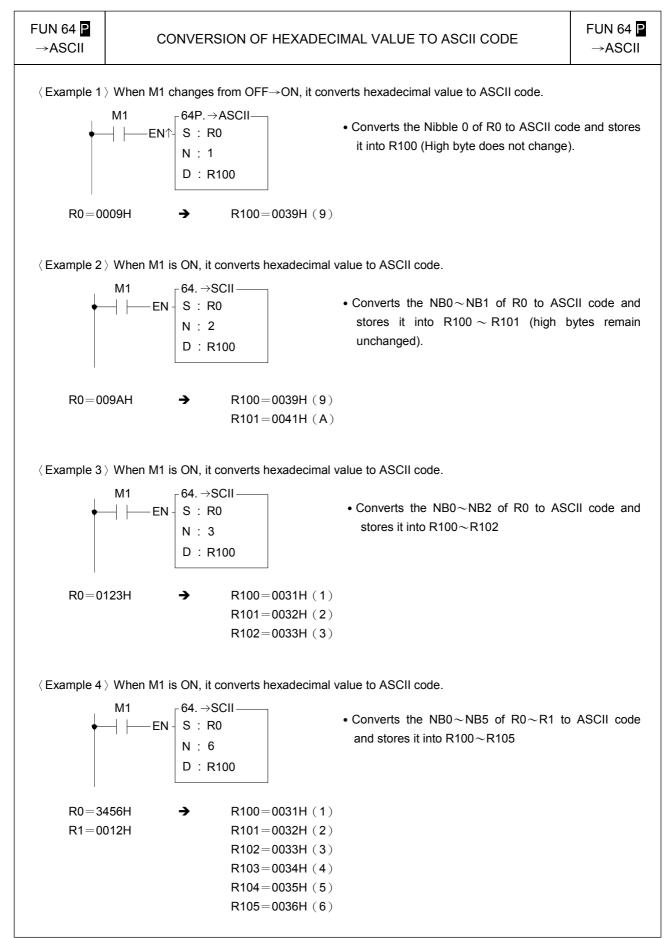





R12

06DAH

1754 hr

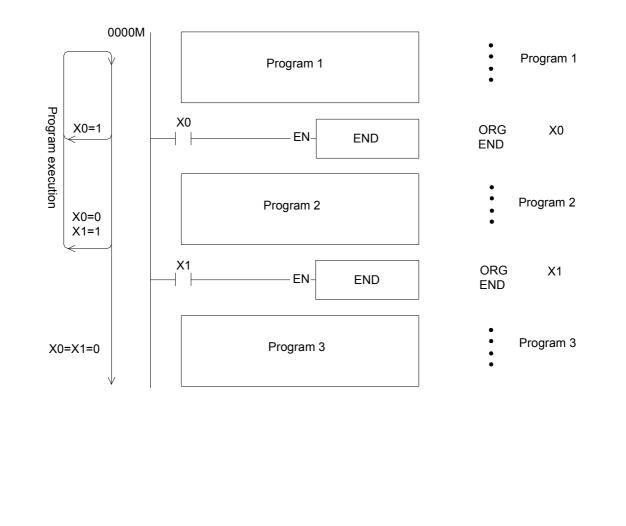

| Ladder symbol<br>63P.→ HEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S : Sta<br>N : Nu                             | tarting sour | ce regi   | stor       |            |       |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------|-----------|------------|------------|-------|----|
| Conversion control – EN <sup>+</sup> S : – ERR<br>N : – D :                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D : Th<br>D : Th<br>(he<br>S, N, I<br>indired | -            |           |            |            |       |    |
| Range WX WY WM WS TMR CTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R HR IF                                       | IR OR        | SR        | ROR        | DR         | К     | XR |
| Range         WX         WT         WM         WS         TMR         CTR         HR         IR         OR         SR         ROR         DR         R           Ope-<br>rand         WX0         WY0         WM0         WS0         T0         C0         R0         R3840         R3904         R3968         R5000         D0         16-bit           WX240         WY240         WM1896         WS984         T255         C255         R3839         R3903         R3967         R4167         R8071         D4095 |                                               |              |           |            |            |       |    |
| <b>S</b> O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0                                           | 0 0          | 0         | $\bigcirc$ | $\bigcirc$ |       | 0  |
| N 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 0                                           | 0 0          | 0         | 0          | 0          | 1~511 | 0  |
| D 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                             | 0            | <b>O*</b> | •          | 0          |       | 0  |

- When conversion control "EN" =1 or "EN ↑" ( is instruction) changes from 0→1, it will convert the N successive hexadecimal ASCII character('0'~'9','A'~'F') convey by 16 bit registers (Low Byte is effective) into hexadecimal value, and store the result into the register starting with D. Every 4 ASCII code is stored in one register. The nibbles of register, which does not involve in the conversion of ASCII code will remain unchanged.
- The conversion will not be performed when N is 0 or greater than 511.
- When there is ASCII error (neither  $30H \sim 39H$  nor  $41H \sim 46H$ ), the output "ERR" is ON.
- The main purpose of this instruction is to convert the hexadecimal ASCII character ('0'~'9','A'~'F'), which is received by communication port1 or communication port2 from the external ASCII peripherals, to the hexadecimal values that the CPU can process directly.



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IN 64 ₽<br>∙ASCII |     | СС                | NVER               | SION C            | )F HE           | XAD             | ECIM             | AL VAI              | LUE T               | O AS(               | CII CO              | DE               |                    | FUN 64<br>→AS0 | _ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|-------------------|--------------------|-------------------|-----------------|-----------------|------------------|---------------------|---------------------|---------------------|---------------------|------------------|--------------------|----------------|---|
| Ladder symbolS : Starting source register $64P. \rightarrow ASCII$ N : Number of hexadecimal digit to be converted to<br>ASCII code.Conversion control $-EN \uparrow -$ S :N :Image: Simple conversion control $-EN \uparrow -$ D :Image: Simple conversion control $-EN \uparrow -$ D :Image: Simple conversion control $-EN \uparrow -$ S :Image: Simple conversion control $-EN \uparrow -$ N :Image: Simple conversion conversi |                   |     |                   |                    |                   |                 |                 |                  |                     |                     |                     |                     |                  |                    |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Range             | WX  | WY                | WM                 | WS                | TMR             | CTR             | HR               | IR                  | OR                  | SR                  | ROR                 | DR               | К                  | XR             | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ope-<br>rand      | WX0 | WY0<br> <br>WY240 | WM0<br> <br>WM1896 | WS0<br> <br>WS984 | T0<br> <br>T255 | C0<br> <br>C255 | R0<br> <br>R3839 | R3840<br> <br>R3903 | R3904<br> <br>R3967 | R3968<br> <br>R4167 | R5000<br> <br>R8071 | D0<br> <br>D4095 | 16-bit<br>+ number | V · Z<br>P0~P9 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S                 | 0   | 0                 | $\bigcirc$         | 0                 | $\bigcirc$      | $\bigcirc$      | 0                | 0                   | 0                   | 0                   | 0                   | 0                |                    | $\bigcirc$     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ν                 | 0   | $\bigcirc$        | $\bigcirc$         | 0                 | $\bigcirc$      | $\bigcirc$      | $\bigcirc$       | $\bigcirc$          | 0                   | $\bigcirc$          | $\bigcirc$          | $\bigcirc$       | 1~511              | $\bigcirc$     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D                 |     | $\bigcirc$        | 0                  | $\bigcirc$        | 0               | 0               | $\bigcirc$       |                     | 0                   | <b>^</b> *          | <b>O*</b>           | 0                |                    | 0              |   |

- When conversion control "EN" =1 or "EN ↑" ( instruction) changes from 0→1, will convert the N successive nibbles of hexadecimal value in registers start from S into ASCII code, and store the result to low byte (high byte remain unchanged) of the registers which start from D.
- The conversion will not be performed when the value of N is 0 or greater than 511.
- The main purpose of this instruction is to convert the numerical value data, which PLC has processed, to ASCII code and transmit to ASCII peripherals by communication port1 or communication port 2.



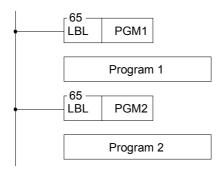

| END     |                                  | PROGRAM END                                                                                                                                                          | END            |
|---------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|         | Ladder symbol                    |                                                                                                                                                                      |                |
| End con | trol— EN— END                    | No operand                                                                                                                                                           |                |
| program | flow will immediately returns to | n is activated. Upon executing the END instruction and<br>the starting point (0000M) to restart the next scan<br>not be executed. When "EN" = 0, this instruction is | - i.e. all the |

• This instruction may be placed more than one point within a program, and its input (end control "EN") controls the end point of program execution. It is especially useful for debugging and for testing.

programs after the END instruction will continue to be executed as the END instruction is not exist.

• It's not necessary to put any END instructions in the main program, CPU will automatic restart to start point when reach the end of main program.

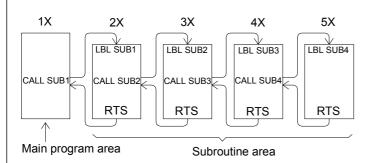


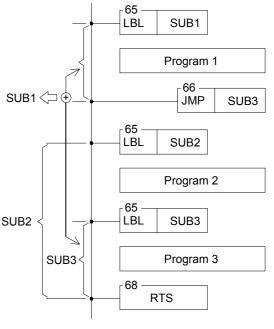

| FUN 65<br>LBL | LABEL                                                        | FUN 65<br>LBL |
|---------------|--------------------------------------------------------------|---------------|
| +             | Ladder symbol<br>65S : Alphanumeric, 1~6 characters<br>LBL S |               |

- This instruction is used to make a tag on certain address within a program, to provide a target address for execution of JUMP, CALL instruction and interrupt service. It also can be used for document purpose to improve the readability and interpretability of the program.
- This instruction serves only as the program address marking to provide the control of procedure flow or for remark. The instruction itself will not perform any actions; whether the program contains this instruction or not, the result of program execution will not be influenced by this instruction.
- The label name can be formed by any 1~6 alphanumeric characters and can't be duplicate in the same program. The following label names are reserved for interrupt function usage. These "reserved words", can't be used for normal program labels.

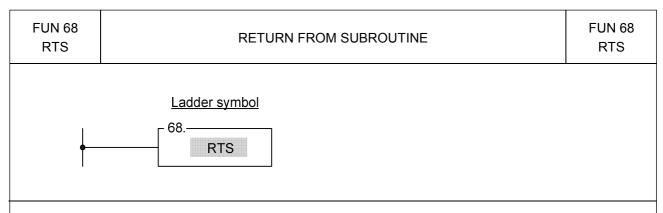
| Reserved words                                                                                                 | Description                                                             |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| X0+I~X15+I (INT0~INT15)                                                                                        | labels for external input (X0 $\sim$ X15) interrupt                     |
| X0-I~X15-I (INT0-~INT15-)                                                                                      | service routine.                                                        |
| HSC0I~HSC7I                                                                                                    | labels for high speed counter HSC0~HSC7 interrupt service routine.      |
| 1MSI (1MS) 、2MSI (2MS) 、3MSI (3MS) 、<br>4MSI (4MS) 、5MSI (5MS) 、10MSI (10MS) 、<br>50MSI (50MS) 、100MSI (100MS) | Labels for 8 kinds of internal timer interrupt service routine.         |
| HSTAI (ATMRI)                                                                                                  | Label for High speed fixed timer interrupt service routine.             |
| PSO0I~PSO3I                                                                                                    | Labels for the pulse output command finished interrupt service routine. |

Only the interrupt service routine can use the label names listed on above table, if mistaken on using the reserved label on the normal subroutine can cause the CPU fail or unpredictable operation.

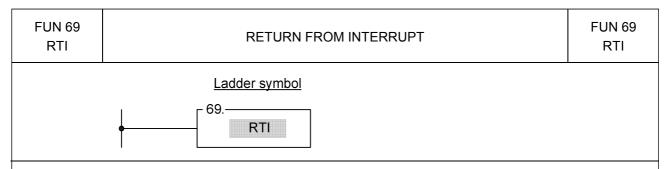

The label of following diagram illustration served only as program remarks (it is not treated as a label for call or jump target). For the application of labeling in jump control, please refer to JMP instruction for explanation. As to the labeling serves as subroutine names, please refer to CALL instruction for details.



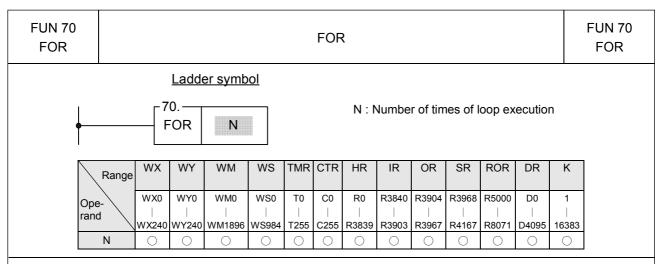

| FUN 66 P<br>JMP              | JUMP                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FUN 66 P<br>JMP                                                                  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Jump contro                  | Ladder symbol<br>66P<br>JMP LBL LBL LBL LBL LBL LBL LBL LBL LBL LB                                                                                                                                                                                                                                                                                                                                                                                                | d                                                                                |
| the market<br>• This instru- | p control "EN"=1 or "EN $\uparrow$ " (  instruction) changes from 0→1, PLC will jump to the located label and continuous to execute the program.<br>Inction is especially suit for the applications where some part of the program will be extain condition. This can shorter the scan time while not executes the whole program.                                                                                                                                 |                                                                                  |
| instruction                  | uction allows jump backward (i.e. the address of LBL is comes before the addre<br>n). However, care should be taken if the jump action cause the scan time exceed the lim<br>timer, the WDT interrupt will be occurred and stop executing.                                                                                                                                                                                                                        |                                                                                  |
|                              | instruction allows only for jumping among main program or jumping among subroutine ss main/subroutine area.                                                                                                                                                                                                                                                                                                                                                       | area, it can't                                                                   |
|                              | <ul> <li>NO</li> <li>EN JMP PATHB</li> <li>Program A</li> <li>Program A</li> <li>PATHB</li> <li>PATHB</li> <li>PATHB</li> <li>Program B</li> <li>Program B</li> <li>In the left diagram, when X0=1, the program directly to the LBL position named continuing to execute program B. The skip the program A and none of the improgram A will be executed. The status and the coils associated with program unchanged (as if there is no program sector)</li> </ul> | PATHB and<br>erefore it will<br>enstructions of<br>s of registers<br>A will keep |


| FUN 67 P<br>CALL | CALL                                                | FUN 67 P<br>CALL |
|------------------|-----------------------------------------------------|------------------|
| Call co          | Ladder symbol<br>67P<br>ntrol — EN↑CALL LBL LBL LBL | be called.       |

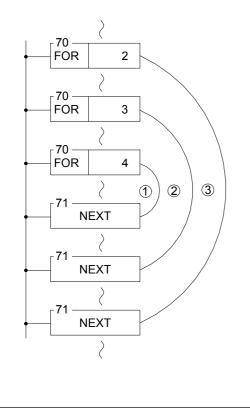
- When call control "EN"=1 or "EN ↑" ( instruction) changes from 0→1, PLC will call (perform) the subroutine bear the same label name as the one being called. When execute the subroutine, the program will execute continuous as normal program does but when the program encounter the RTS instruction then the flow of the program will return back to the address immediately after the CALL instruction.
- All the subroutines must end with one "return from subroutine instruction RTS" instruction; otherwise it will cause executing error or CPU shut down. Nevertheless, an RTS instruction can be shared by subroutines (so called as multiple entering subroutines; even though the entry points are different, they have a same returning path) as illustrated in the right diagram subroutine SUB1~3.
- When main program called a subroutine, the subroutine also can call the other subroutines (so called the nested subroutines) for up to 5 levels at the most (include the interrupt routine).



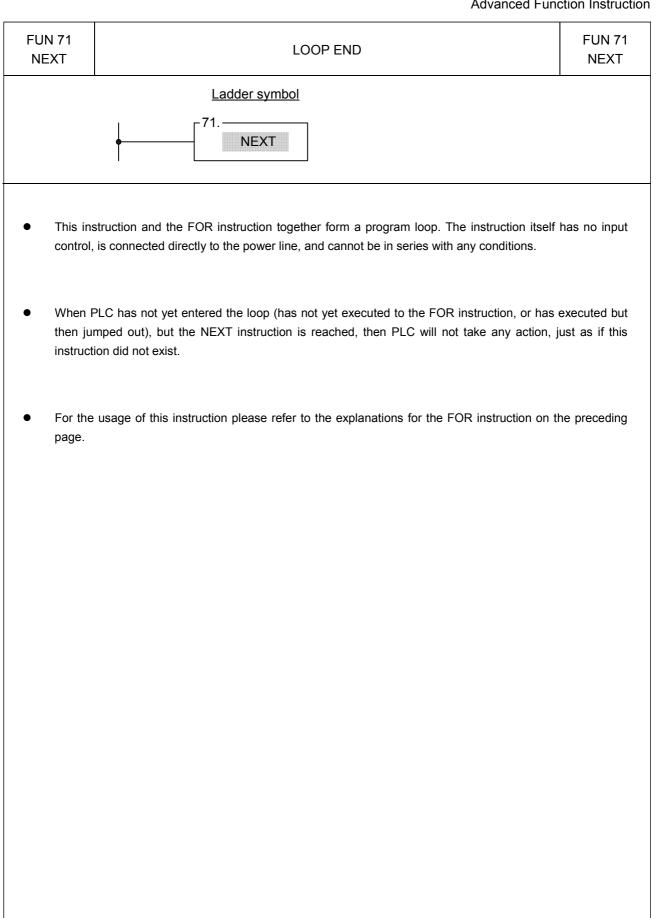


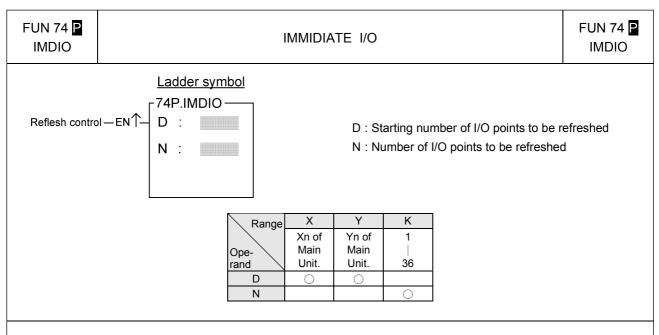


Interrupt service programs (HSC0I~HSC7I、PSO0I~PSO3I、X0+I~X15+I/INT0~INT15、X0-I~X15-I/INT0~INT15、X0-I~X15-I/INT0~INT15、X0-I~X15-I/INT0~INT15、X0-I~X15-I/INT0~INT15、X0-I~X15-I/INT0~INT15-、HSTAI/ATMRI、1MSI/1MS、2MSI/2MS、3MSI/3MS、4MSI/4MS、5MSI/5MS、10MSI/10MS、50MSI/50MS、100MSI/100MS) are also a kind of subroutine. It is also placed in sub program area. However, the calling of interrupt service program is triggered off by the signaling of hardware to make the CPU perform the corresponding interrupt service program (which we called as the calling of the interrupt service program). The interrupt service program can also call subroutine or interrupted by other interrupts with higher priority. Since it is also a subroutine (which occupied one level), it can only call or interrupted by 4 levels of subroutine or interrupt service program. Please refer to RTI instruction for explanation.




- This instruction is used to represent the end of a subroutine. Therefore it can only appear within the subroutine area. Its input side has no control signal, so there is no way to serially connect any contacts. This instruction is self sustain, and is directly connected to the power line.
- When PLC encounter this instruction, it means that the execution of a subroutine is finished. Therefore it will return to the address immediately after the CALL instruction, which were previously executed and will continue to execute the program.
- If this instruction encounters any of the three flow control instructions MC, SKP, or JMP, then this instruction
  may not be executed (it will be regarded as not exist). If the above instructions are used in the subroutine
  and causing the subroutine not to execute the RTS instruction, then PLC will halt the operation and set the
  M1933( flow error flag) to 1. Therefore, no matter what the flow is going, it must always ensure that any
  subroutine must be able to execute a matched RTS instruction.
- For the usage of the RTS instruction please refer to instructions for the CALL instruction.




- The function of this instruction is similar to RTS. Nevertheless, RTS is used to end the execution of sub program, and RTI is used to end the execution of interrupt service program. Please refer to the explanation of RTS instruction.
- A RTI instruction can be shared by more than one interrupt service program. The usage is the same as the sharing of an RTS by many subroutines. Please refer to the explanation of CALL instruction.
- The difference between interrupts and call is that the sub program name (LBL) of a call is defined by user, and the label name and its call instruction are included in the main program or other sub program. Therefore, when PLC performs the CALL instruction and the input "EN"=1 or "EN↑" ( instruction) changes from 0→1, the PLC will call (execute) this sub program. For the execution of interrupt service program, it is directly used with hardware signals to interrupt CPU to pause the other less important works, and then to perform the interrupt service program corresponding to the hardware signal (we call it the calling of interrupt service program). In comparing to the call instruction that need to be scanned to execute, the interrupt is a more real time in response to the event of the outside world. In addition, the interrupt service program cannot be called by label name; therefore we preserve the special "reserved words" label name to correspond to the various interrupts offered by PLC (check FUN65 explanation for details). For example, the reserved word X0+I is assigned to the interrupt is occurred (X0: ), the PLC will pause the other lower priority program and jump to the subroutine address which labeled as X0+I to execute the program immediately.
- If there is a interrupt occurred while CPU is handling the higher priority (such as hardware high speed counter interrupt) or same priority interrupt program (please refer to Chapter 10 for priority levels), the PLC will not execute the interrupt program for this interrupt until all the higher priority programs were finished.
- If the RTI instruction cannot be reached and performed in the interrupt service routine, may cause a serious CPU shut down. Consequently, no matter how you control the flow of program, it must be assured that the RTI instruction will be executed in any interrupt service program.
- For the detailed explanation and example for the usage of interrupts, please refer to Chapter 10 for explanation.




- This instruction has no input control, is connected directly to the power line, and cannot be in series with any conditions.
- The programs within the FOR and NEXT instructions form a program loop (the start of the loop program is the next instruction after FOR, and the last is the instruction before NEXT). When PLC executes the FOR instruction, it first records the N value after that instruction (loop execution number), then for N times successively execution from start to last of the programs in the loop. Then it jumps out of the loop, and continues executes the instruction immediately after the NEXT instruction.
- The loop can have a nested structure, i.e. the loop includes other loops, like an onion. 1 loop is called a level, and there can be a maximum of 5 levels. The FOR and NEXT instructions must be used in pairs. The first FOR instruction and the last NEXT instruction are the outermost (first) level of a nested loop. The second FOR instruction and the second last NEXT instruction are the second level, the last FOR instruction and the first NEXT instruction form the loop's innermost level.



- In the example in the diagram at left, loop ① will be executed 4 ×3 ×2 = 24 times, loop ② will be executed 3 ×2 = 6 times, and loop ③ will be executed 2 times.
- If there is a FOR instruction and no corresponding NEXT instruction, or the FOR and NEXT instructions in the nested loop have not been used in pairs, or the sequence of FOR and NEXT has been misplaced, then a syntax error will be generated and this program may not be executed.
- In the loop, the JMP instruction may be used to jump out of the loop. However, care must be taken that once the loop has been entered (and executed to the FOR instruction), no matter how the program flow jumps, it must be able to reach the NEXT instruction before reaching the END instruction or the bottom of the program. Otherwise FBs-PLC will halt the operation and show an error message.
- The effective range of N is 1~16383 times. Beyond this range FBs-PLC will treat it as 1. Care should be taken , if the amount of N is too large and the loop program is too big, a WDT may occur.

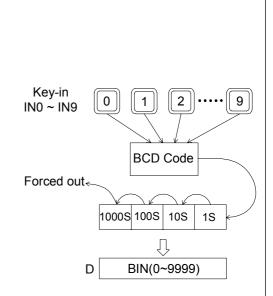




- For normal PLC scan cycle, the CPU gets the entire input signals before the program is executed, and then perform the executing of program based on the fresh input signals. After finished the program execution the CPU will update all the output signals according to the result of program execution. Only after the complete scan has been finished will all the output results be transferred all at once to the output. Thus for the input event to output responses, there will be a delay of at least 1 scan time (maximum of 2 scan time). With this instruction, the input signals or output signals specified by this instruction can be immediately refresh to get the faster input to output response without the limitation imposed by the scan method.
- When refresh control "EN" = 1 or "EN ↑" ( instruction) has a transition from 1 to 0, then the status of N input points or output points (D~D+N-1) will be refreshed.
- The I/O points for FBs-PLC's immediate I/O are only limited to I/O points on the main unit. The table below shows permissible I/O numbers for 20, 32, 40 and 60 point main units:

| Main-unit type<br>Permissible numbers | 20 points | 32 points | 40 points | 60 points |
|---------------------------------------|-----------|-----------|-----------|-----------|
| Input signals                         | X0~X11    | X0~X19    | X0~X23    | X0~X35    |
| Output signals                        | Y0~Y7     | Y0~Y11    | Y0~Y15    | Y0~Y23    |

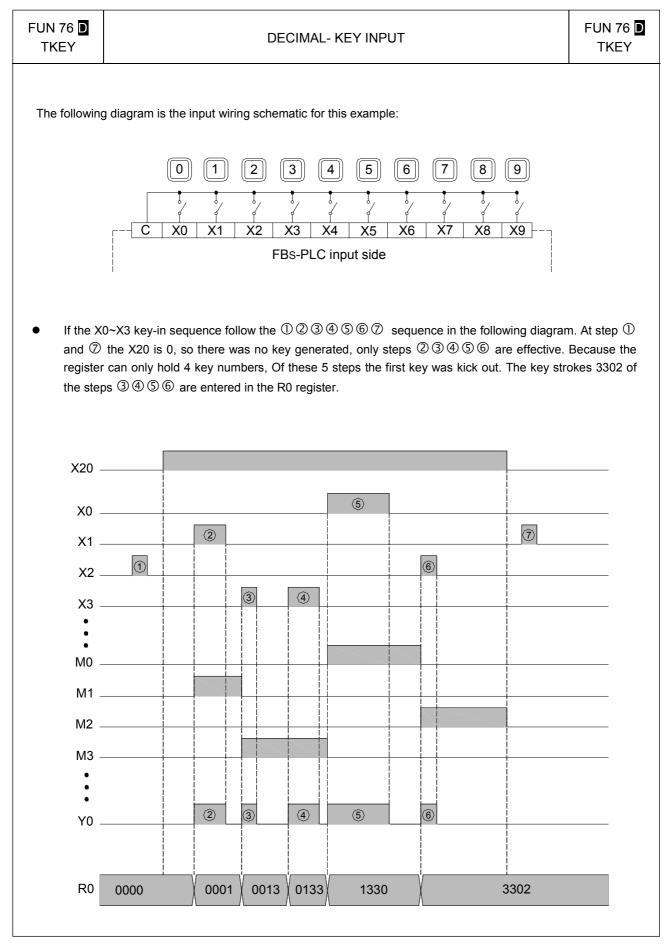
- If the intended refresh I/O signals of this instruction is beyond the range of I/O points specified on above table then PLC will be unable to operate and the M1931 error flag will be set to 1. (for example, if in a program, D=X11, N=10, which means X11 to X20 are to be immediately retrieved. Supposing the main unit is FBs-32MA, then its biggest input point is X19, and clearly X20 has already exceeded the main unit's input point number so under such case M1931 error flag will be set to 1).
- With this instruction, PLC can immediately refresh input/output signals. However, the delay of the hardware or the software filter impose on the I/O signals still exist. Please pay attention on this.


| FUN 76 D |  |
|----------|--|
| TKEY     |  |

DECIMAL- KEY INPUT

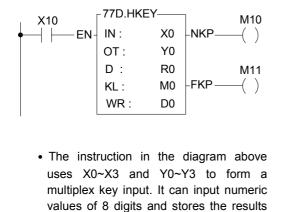
FUN 76 D TKEY

| FKEY            |      |      |        |       |       | -          |            |         | -          |            |           |                    |        |            | TKE    |
|-----------------|------|------|--------|-------|-------|------------|------------|---------|------------|------------|-----------|--------------------|--------|------------|--------|
|                 |      | Lad  | der sy | /mbol | l     |            |            | 11      | N : Ke     | y input    | point     |                    |        |            |        |
|                 |      | ∟76D |        | (—    | -     |            |            | C       | ) : reg    | ister s    | toring    | key-in             | nume   | rals       |        |
| Input control – | -EN— | IN : |        |       | - KPF | R—Keyi     | n action   | ĸ       | (L: stai   | rting co   | oil to re | eflect t           | he inp | ut stati   | JS     |
|                 |      | D    |        |       |       |            |            | C<br>ir | -          |            |           | vith V<br>olicatio |        | P0~P9      | to ser |
|                 |      | KL : |        |       |       |            |            |         |            | addro      |           | mouto              |        |            |        |
|                 |      |      |        |       |       |            |            |         |            |            |           |                    |        |            |        |
| Range           | Х    | Y    | Μ      | S     | WY    | WM         | WS         | TMR     | CTR        | HR         | OR        | SR                 | ROR    | DR         | XR     |
| , i tungo       | X0   | Y0   | M0     | S0    | WY0   | WM0        | WS0        | Т0      | C0         | R0         | R3904     | R3968              | R5000  | D0         | V × Z  |
| Ope-            |      |      |        |       |       |            |            |         |            |            |           |                    |        |            |        |
| rand            | X240 | Y240 | M1896  | S984  | WY240 | WM1896     | WS984      | T255    | C255       | R3839      | R3967     | R4167              | R8071  | D4095      | P0~P9  |
| IN              | 0    |      |        |       |       |            |            |         |            |            |           |                    |        |            |        |
| D               |      |      |        |       | 0     | $\bigcirc$ | $\bigcirc$ | 0       | $\bigcirc$ | $\bigcirc$ | 0         | <b>O*</b>          | ○*     | $\bigcirc$ | 0      |
| KL              |      | -    | -      |       |       |            |            |         | 1          |            |           |                    | 1      |            |        |


- This instruction has designated 10 input points IN~IN+9 (IN0~IN9) to one decimal number entry (IN->0, IN+1->1...). According to the key-in sequence (ON) of these input points, it is possible to enter 4 or 8 decimal numbers into the registers specified by D.
- When input control "EN" = 1, this instruction will monitor the 10 input points starting from IN and put the corresponding number into D register while the key were depressed. It will wait until the input point has released, then monitor the next "ON" input point, and shift in the new number into D register (high digit is older than low digit ) . For the 16-bit operand, D register can store up to 4 digits, and for the 32-bit operand 8 digits may be stored. When the key numbers full fill the D register, new key-in number will kick out the oldest key number of the D register. The key-in status of the 10 input points starting from IN will be recorded on the 10 corresponding coil starting from KL. These coils will set to 1 while the corresponding key is depressed and remain unchanged even if the corresponding key is released. Until other key is depressed then it will return to zero. As long as any input point is depressed (ON), then the key-in flag KPR will set to 1. Only one of IN0~IN9 key can be depressed at the same time. If more than one is pressed, then the first one is the only one taken. Below is a schematic diagram of the function with 16-bit operand.

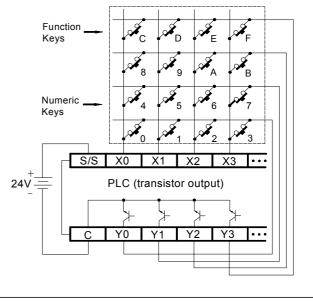


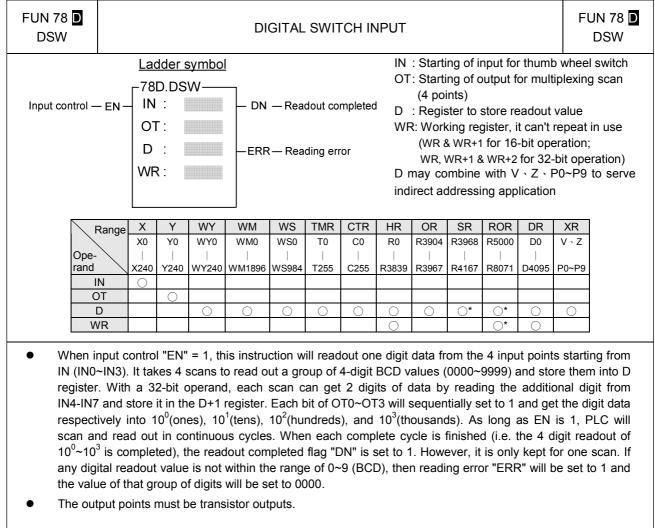
• When input control "EN" = 0, this instruction will not be executed. KPR output and KL coil status will be 0. However, the numerical values of D register will remain unchanged.

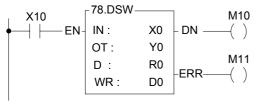



• The instruction at left represents the input point X0 with the number "0", X1 is represented by 1, ..., M0 records the action of X0, M1 records the action of X1 ..., and the input numerical values are stored in the R0 register.

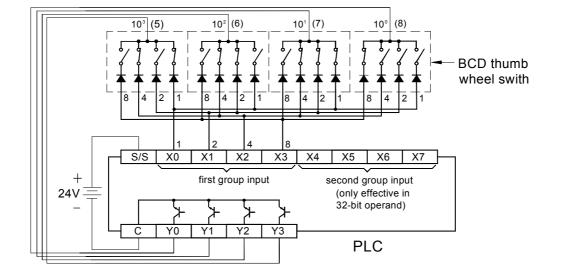



| FUN 77 D<br>HKEY |         |            |            |            |              | HEX        | KEY II    | NPUT          | -    |            |          |          |                    |            | FUN <sup>-</sup><br>HKI |       |
|------------------|---------|------------|------------|------------|--------------|------------|-----------|---------------|------|------------|----------|----------|--------------------|------------|-------------------------|-------|
|                  |         | La         | dder s     | symb       | ol           |            |           |               |      |            |          |          |                    |            |                         |       |
|                  |         | -77        | D.HK       | =Y         |              |            |           |               | I    | N : Sta    | arting o | of digit | al inpu            | it for ke  | ey scar                 | ו     |
| Execution contro | I— EN - |            |            | -          | - <b>-</b> - | IKP — Nu   | mber ke   | y pres        | 6    |            |          |          | al outp<br>points) |            | multipl                 | exing |
|                  |         | 01         | Г:         |            |              |            |           |               | Ľ    | ) : Re     | gister   | to stor  | e key-             | in num     | nbers                   |       |
|                  |         | D          |            |            | ⊢⊢₽          | KP — Fu    | nction ke | ev pres       | s k  | (L : Sta   | arting r | elay fo  | or key             | status     |                         |       |
|                  |         |            |            |            |              |            |           | <i>y</i> proc |      | VR: W      | orking   | regist   | er, it c           | an't re    | peat in                 | use   |
|                  |         | KL         |            |            |              |            |           |               |      |            |          |          |                    |            | -P9 to s                | serve |
|                  |         | WF         | ۲:         |            |              |            |           |               | i    | ndirect    | addre    | essing   | applica            | ation      |                         |       |
| Rang             | e X     | Y          | Μ          | S          | WY           | WM         | WS        | TMR           | CTR  | HR         | OR       | SR       | ROR                | DR         | XR                      |       |
|                  | X0      | Y0         | M0         | S0         | WY0          | WM0        | WS0       | Т0            | C0   | R0         | R3904    | R3968    | R5000              | D0         | V 、 Z                   |       |
| Ope-             | X240    | 1          |            |            | 140/040      | WM1896     | 14/0004   | T255          | 0055 |            | D0007    |          | 0074               | D4095      |                         |       |
| IN               | <u></u> | 1240       | IVI 1690   | 5904       | VV 1240      | VVIVI 1690 | VV 5964   | 1200          | 0255 | K3039      | K3907    | R4107    | R007 I             | D4095      | P0~P9                   |       |
| OT               |         | 0          |            |            |              |            |           |               |      |            |          |          |                    |            |                         |       |
| D                |         |            |            |            |              |            |           |               |      |            |          |          | $\bigcirc$         | $\bigcirc$ |                         |       |
| KL               |         | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |              |            |           |               |      |            |          |          |                    |            |                         |       |
| WR               |         |            |            |            |              |            |           |               |      | $\bigcirc$ |          |          | 0*                 | 0          |                         |       |


- The numeric (0~9) key function of this instruction is similar as for the TKEY instruction. The hardware connection for TKEY and HKEY is different. For TKEY instruction each key have one input point to connect, while HKEY use 4 input points and 4 output points to form a 4x4 multiplex 16 key input. 4x4 means that there can be 16 input keys, so in addition to the 10 numeric keys, the other 6 keys can be used as function keys (just like the usual discrete input). The actions of the numeric keys and the function keys are independent and have no effect on each other.
- When execution control "EN" = 1, this instruction will scan the numeric keys and function keys in the matrix formed by the 4 input points starting from IN and the 4 output points starting from OT. For the function of the numeric keys and "NKP" output please refer to the TKEY instruction. The function keys maintain the key-in status of the A~F keys in the last 6 relays specified by KL (the first 10 store the key-in status of the numeric keys). If any one of the A~F keys is depressed, FKP (FO1) will set to 1. The OT output points for this instruction must be transistor outputs.
- The biggest number for a 16-bit operand is 4 digits (9999), and for 32-bit operand is 8 digits (99999999). However, there are only 6 function keys (A~F), no matter whether it is a 16-bit or 32-bit operand.

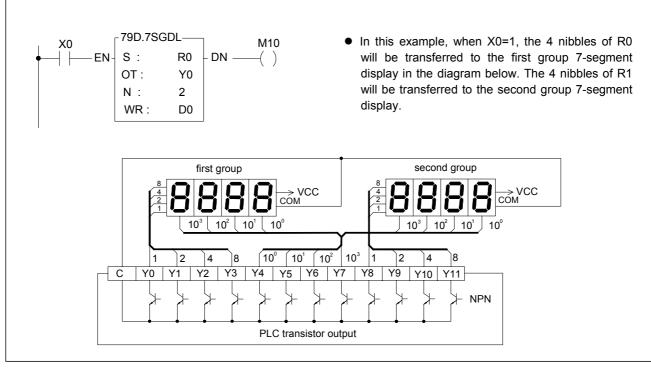


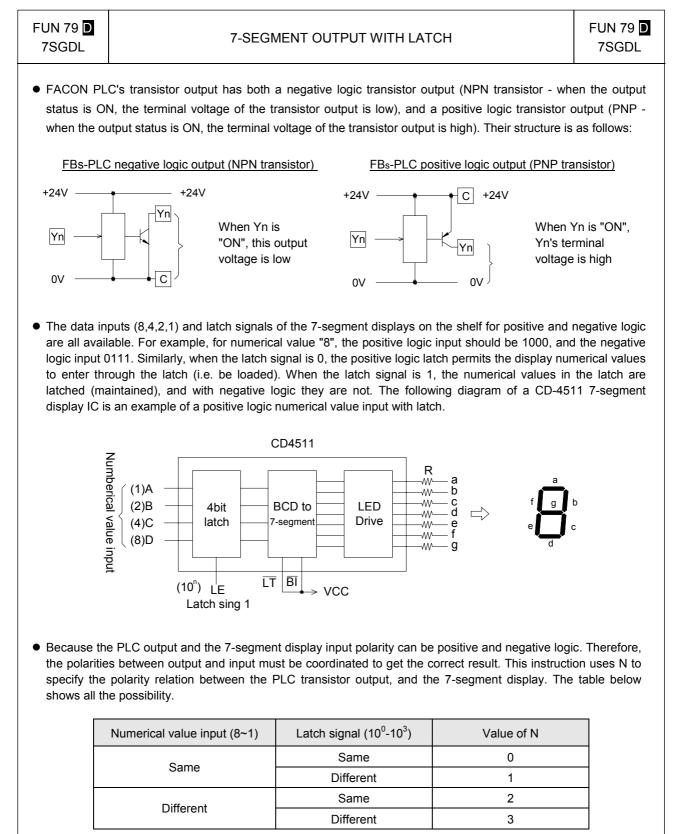

in R1R0. The input status of the function


keys is stored in M10(A)~M15(F).









- In this example, when X10 is 1, then the numeric value of the thumb wheel switch (5678 in this example) will be read out and stored into the R0 register.
- The bits (8,4,2,1) with same digit should be connect together and series with a diode (as shown in diagram below).
- With 32-bit operand a set of similar thumb wheel switch may be added to X4~X7 (Y0~Y3 are shared with another group).



| FUN 79 D<br>7SGDL  |                 |                      |                       | 7-9                | SEGM              | ENT (                                                                                                                                                                                                                                                                                                    | DUTF            | VUT W            | ITH L               | атсн                |                     |                     |                  |                         | IN 79 D<br>SGDL |
|--------------------|-----------------|----------------------|-----------------------|--------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|---------------------|---------------------|---------------------|---------------------|------------------|-------------------------|-----------------|
| Execution control- | — E1            | -79<br>- S<br>0<br>N | 9D.7S(<br>;<br>;<br>; | symbol<br>GDL      | DN-               | <ul> <li>S : Register storing the data (BCD) to be displayed</li> <li>OT : Starting number of scanning output</li> <li>N : Specify signal output and polarity of WR : Working register, it can't repeat in us</li> <li>S may combine with V ≤ Z ≤ P0~P9 to se indirect addressing application</li> </ul> |                 |                  |                     |                     |                     |                     |                  | ut<br>of latch<br>n use |                 |
| Range              | Y               | WX                   | WY                    | WM                 | WS                | TMR                                                                                                                                                                                                                                                                                                      | CTR             | HR               | IR                  | OR                  | SR                  | ROR                 | DR               | К                       | XR              |
| Ope-               | Y0<br> <br>'240 | WX0<br> <br>WX240    | WY0<br> <br>WY240     | WM0<br> <br>WM1896 | WS0<br> <br>WS984 | T0<br> <br>T255                                                                                                                                                                                                                                                                                          | C0<br> <br>C255 | R0<br> <br>R3839 | R3840<br> <br>R3903 | R3904<br> <br>R3967 | R3968<br> <br>R4167 | R5000<br> <br>R8071 | D0<br> <br>D4095 | 16-bit<br>number        | V \ Z<br>P0~P9  |
| S                  |                 |                      | 0                     | $\bigcirc$         | $\bigcirc$        | $\bigcirc$                                                                                                                                                                                                                                                                                               | 0               | 0                | 0                   | 0                   | 0                   | 0                   | 0                | 0                       | $\bigcirc$      |
| OT                 | 0               |                      |                       |                    |                   |                                                                                                                                                                                                                                                                                                          |                 |                  |                     |                     |                     |                     |                  |                         |                 |
| N                  |                 |                      |                       |                    |                   |                                                                                                                                                                                                                                                                                                          |                 |                  |                     |                     |                     |                     |                  | 0~3                     |                 |

- When input control "EN" = 1, the 4 nibbles of the S register, from digit 0 to digit 3, are sequentially sent out to the 4 output points, OT0~OT3. While output the digit data, the latch signal of that digit (OT4 corresponds to digit 0, OT5 corresponds to digit 1, etc...) at the same time is also sent out so that the digital value will be loaded and latched into the 7-segment display respectively.
- When in D (32-bit) instruction, nibbles 0~3 from the S register, and nibbles 0~3 from the S+1 register are transferred separately to OT0~OT3 and OT8~OT11. Because they are transferred at the same time, they can use the same latch signal. 16-bit instructions do not use OT8~OT11.
- As long as "EN" remains 1, PLC will execute the transfer cyclically. After each transfer of a complete group of numerical values (nibbles 0~3 or 0~7), the output completed flag "DN" will set to 1. However, it will only be kept for 1 scan.

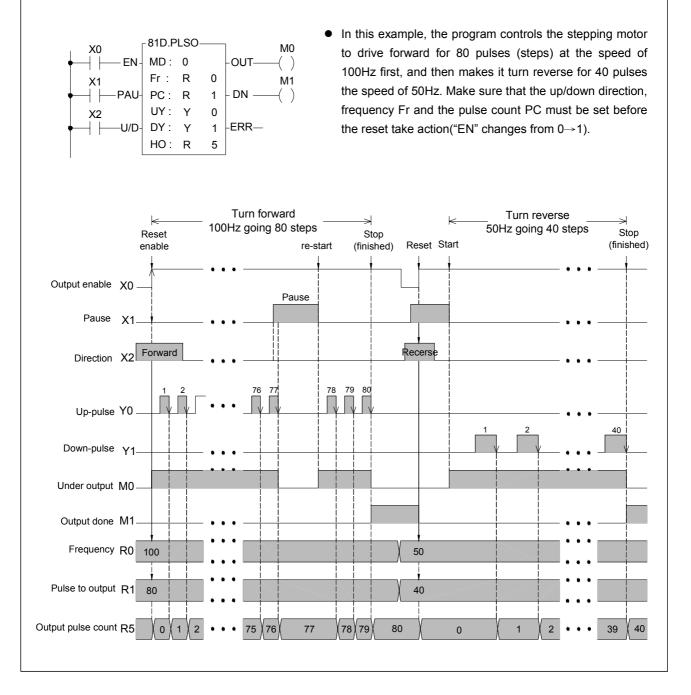




• In the diagram above, CD4511 is used as an example. If use NPN output, the data input polarity is different to PLC, and its latch input polarity is the same as PLC, so N value should chosen as 2.

| FUN 80<br>MUXI   |         |                  |            |            | MUL      | TIPLE      | EX IN      | PUT        |                        |                                                  |                                                      |                                                                                  |                                               | FUN<br>MU           |       |
|------------------|---------|------------------|------------|------------|----------|------------|------------|------------|------------------------|--------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------|---------------------|-------|
| Execution contro | I— EN - | Г <sup>80.</sup> |            |            | — DN — I | Executi    | on con     | npleted    | OT:<br>N:<br>D:<br>Dma | Multipl<br>must t<br>Multipl<br>Regist<br>ay com | ex out<br>be trans<br>ex inpu<br>er for s<br>ibine w | ut point<br>put poin<br>sistor o<br>ut lines<br>storing<br>vith V, 2<br>upplicat | nt nur<br>output<br>(2~8)<br>result<br>Z, P0~ | nber<br>point)<br>) | serve |
| Range            | X       | Y                | WY         | WM         | WS       | TMR        | CTR        | HR         | OR                     | SR                                               | ROR                                                  | DR                                                                               | K                                             | XR                  |       |
| i tange          | X0      | Y0               | WY0        | WM0        | WS0      | Т0         | C0         | R0         | R3904                  | R3968                                            | R5000                                                | D0                                                                               | 2                                             | V · Z               |       |
| Ope-<br>rand     | X240    | <br>Y240         | <br>WY240  | <br>WM1896 | WS984    | <br>T255   | <br>C255   | <br>R3839  | <br>R3967              | <br>R4167                                        | <br>R8071                                            | <br>D4095                                                                        | <br>8                                         | P0~P0               |       |
| IN               | 0       |                  |            |            |          |            |            |            |                        |                                                  |                                                      |                                                                                  |                                               |                     |       |
| OT               |         | $\bigcirc$       |            |            |          |            |            |            |                        |                                                  |                                                      |                                                                                  |                                               |                     |       |
| N                |         |                  |            |            |          |            |            |            |                        |                                                  |                                                      |                                                                                  | $\bigcirc$                                    |                     |       |
| D                |         |                  | $\bigcirc$ | 0          | 0        | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$             | <b>*</b>                                         | <b>*</b>                                             | $\bigcirc$                                                                       |                                               | $\bigcirc$          |       |

- (IN0~IN7) starting from the input point specified by IN. With this method we can obtain 8×N input status, but only need to use 8 input points and N output points.
  The multiplex scanning method goes through N output points starting from the OT output point. Each scan one of the N bits will set to 1 and the corresponding line will be selected. OT0 responsible for first line, while OT1
- of the N bits will set to 1 and the corresponding line will be selected. OT0 responsible for first line, while OT1 responsible for second line, etc. Until it read all the N lines the 8xN status that has been read out is then stored into the register starting at D, and the execution completed flag "DN" is set as 1 (but is only kept for one scanning period).
- With every scan, this instruction retrieves a line for 8 input status, so N lines require N scan cycles before they can be completed.




| FUN 81<br>PLSC |                       |                          |                                                  |                       |                             | PUL                        | SE O       | UTP        | UT     |                                        |                                                                            |                                          |                                                                                  | F                                        | UN 81 D<br>PLSO   |
|----------------|-----------------------|--------------------------|--------------------------------------------------|-----------------------|-----------------------------|----------------------------|------------|------------|--------|----------------------------------------|----------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------|-------------------|
|                |                       |                          | Ladd                                             | er syn                | nbol                        |                            |            |            |        |                                        |                                                                            |                                          |                                                                                  |                                          |                   |
|                |                       | — EN —<br>-PAU—          | -81D.F<br>MD :<br>Fr :<br>PC :<br>UY:ol<br>DY:ol | PLSO-<br>r CK<br>r DR |                             | DUT— C<br>DN — C<br>ERR— E | output     | 0          | eted   | Fr<br>PC<br>UY<br>DY<br>HO<br>CK<br>DR | : Pulse<br>: Outp<br>: Up p<br>: Dowr<br>: Cum<br>(Ca<br>: Pulse<br>: Up/D | n pulse<br>ulative<br>in be n<br>e outpu | ency<br>e coun<br>utput po<br>output<br>output<br>ot assi<br>ut point<br>utput p | t<br>pint (MD=<br>t point (N<br>pulse re | 1D=0).<br>gister. |
| 1              |                       | Y                        | WX                                               | WY                    | WM                          | WS                         | TMR        | CTR        | HR     | OR                                     | SR                                                                         | ROR                                      | DR                                                                               | K                                        |                   |
|                | Rang<br>Ope-<br>rand  | ge Yn of<br>Main<br>Unit | WX0                                              | WY0                   | WM0<br> <br> <br> <br> <br> | WS0                        | Т0<br>     | C0<br>     | R0<br> | R3904                                  | R3968                                                                      | R5000                                    | D0<br>                                                                           | 16/32-bi<br>+/- numbe                    | -                 |
|                | MD                    |                          |                                                  |                       |                             |                            |            |            |        |                                        |                                                                            |                                          |                                                                                  | 0~1                                      |                   |
|                | Fr                    |                          | $\bigcirc$                                       | 0                     | 0                           | $\bigcirc$                 | 0          | $\bigcirc$ | 0      | $\bigcirc$                             | 0                                                                          | 0                                        | 0                                                                                | 8~2000                                   |                   |
| _              | PC                    |                          | $\bigcirc$                                       | $\bigcirc$            | 0                           | $\bigcirc$                 | $\bigcirc$ | $\bigcirc$ | 0      | $\bigcirc$                             | 0                                                                          | $\bigcirc$                               | $\bigcirc$                                                                       | 0                                        |                   |
| -              | UY , CK               | <u> </u>                 |                                                  |                       |                             |                            |            |            |        |                                        |                                                                            |                                          |                                                                                  |                                          |                   |
| -              | DY , DR               |                          |                                                  | $\cap$                |                             |                            | $\sim$     | $\sim$     | 0      |                                        | <b>^</b> *                                                                 | *                                        | 0                                                                                |                                          |                   |
|                | HO                    |                          |                                                  | U                     | $\bigcirc$                  | $\cup$                     | $\cup$     | $\cup$     | 0      | 0                                      | ○*                                                                         | 0                                        | 0                                                                                |                                          |                   |
|                | ien MD=(<br>ienever t | ,                        |                                                  | •                     |                             | •                          |            |            |        |                                        | 0                                                                          | et actio                                 | on, whi                                                                          | ch is to                                 | clear the         |

- Whenever the output control "EN" changes from 0→1, it first performs the reset action, which is to clear the output flag "OUT" and "DN" as well as the pulse out register HO to be 0. It gets the pulse frequency and output pulse count values, and reads status of up and down direction "U/D", so as to determine the direction to be upward or downward. As the reset finished, this instruction will check the input status of pause output "PAU". No action will be taken if the pause output is 1 (output pause). If the PAU is 0, it will start to output the ON/OFF pulse with 50% duty at the frequency Fr to the UY(U/D=1) or DY(U/D=0) point. It will increment the value of HO register each time when a pulse is output, and will stop the output when HO register's pulse count is equal to or greater than the cumulative pulse count of PC register and set the output complete flag "DN" to 1. During the time when output pulse is transmitting the output transmitting flag "OUT" will be set to 1, otherwise it will be 0.
- Once it starts to transmit pulse, the output control "EN" should kept to 1. If it is changed to 0, it will stop the pulse sending (output point become OFF) and the flag "OUT" changes back to 0, but the other status or data will keep unchanged. However, when its "EN" changes again from 0 to 1, it will lead to a reset action and treat as a new start; the entire procedure will be restarted again.
- If you want to pause the pulse output and not to restart the entire procedure, the 'pause output' "PAU" input can be used to pause it. When "PAU" =1, this instruction will pause the pulse transmitting (output point is OFF, flag "OUT" change back to 0 and the other status or data keeps unchanged). As it waits until the "PAU" changes back from 1 to 0, this instruction will return to the status before it is paused and continues the pulse transmitting output.
- During the pulse transmission, this instruction will keep monitoring the value of pulse frequency Fr and output pulse count PC. Therefore, as long as the pulse output is not finished, it may allow the changing of the pulse frequency and pulse count. However, the up/down direction "U/D" status will be got only once when it takes the reset action ("EN" changes from 0→1), and will keep the status until the pulse output completed or another reset occur. That is to say, except that at the very moment of reset, the change of "U/D" does not influence the operation of this instruction.
- The main purpose of this instruction is to drive the stepping motor with the UY (upward) and DY (downward) two directional pulses control, so as to help you control the forward or reverse rotating of stepping motor. Nevertheless, if you need only single direction revolving, you can assign just one of the UY or DY (which will save one output point), and leaving the other output blank. In such case, the instruction will ignore the up/down input status of "U/D", and the output pulse will send to the output point you assigned.

| FUN 81<br>PLSO | PULSE OUTPUT | FUN 81<br>PLSO |
|----------------|--------------|----------------|
|----------------|--------------|----------------|

- When MD=1, the pulse output will reflect on the control output DIR (pulse direction. DIR=1, up; DIR=0, down) and CK (pulse output).
- This instruction can only be used once, and UY (CK) and DY (DR) must be transistor output point on the PLC main unit.
- The effective range of output pulse count PC for 16 bit operand is 0~32767. For the 32 bit operand( instruction), it is 0~2147483647. If the PC value = 0, it is treated as infinite pulse count, and this instruction will transmit pulses without end with HO value and "DN" flag set at 0 all the time. The effective range of pulse frequency (Fr) is 8~2000. If the value PC or Fr exceeds the range, this instruction will not be carried out and the error flag "ERR" will set to 1.

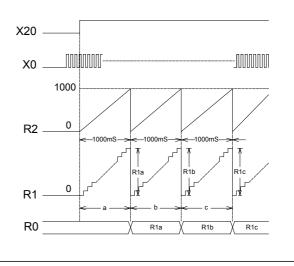


| UN 82<br>PWM |                                                                                                                                                                                                     |                   |                   | PUL                | SE WI             | DTH             | MOE             | OULAT            | ION                 |                     |                     |                     |                  | FUN<br>PW       |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|--------------------|-------------------|-----------------|-----------------|------------------|---------------------|---------------------|---------------------|---------------------|------------------|-----------------|
| Execution    | n control—EN<br>To : Ladder symbol<br>82.PWM<br>To : ERR—Error flag<br>Tp : Ladder symbol<br>To : Pulse ON width<br>(0~32767mS)<br>Tp : Pulse period<br>(1~32676mS)<br>OT : OT : Pulse output point |                   |                   |                    |                   |                 |                 |                  |                     |                     |                     |                     |                  |                 |
| Rar          | ae Y                                                                                                                                                                                                | WX                | WY                | WM                 | WS                | TMR             | CTR             | HR               | IR                  | OR                  | SR                  | ROR                 | DR               | K               |
| Ope-<br>rand | Yn<br>of main<br>unit                                                                                                                                                                               | WX0<br> <br>WX240 | WY0<br> <br>WY240 | WM0<br> <br>WM1896 | WS0<br> <br>WS984 | T0<br> <br>T255 | C0<br> <br>C255 | R0<br> <br>R3839 | R3840<br> <br>R3903 | R3904<br> <br>R3967 | R3968<br> <br>R4167 | R5000<br> <br>R8071 | D0<br> <br>D4095 | 0<br> <br>32767 |
| То           |                                                                                                                                                                                                     | 0                 | 0                 | $\bigcirc$         | 0                 | $\bigcirc$      | $\bigcirc$      | 0                | 0                   | 0                   | 0                   | 0                   | 0                | $\bigcirc$      |
| Tn           |                                                                                                                                                                                                     | $\bigcirc$        | $\bigcirc$        | $\bigcirc$         | 0                 | $\bigcirc$      | $\bigcirc$      | $\bigcirc$       | $\bigcirc$          | $\bigcirc$          | $\bigcirc$          | $\bigcirc$          | $\bigcirc$       | $\bigcirc$      |
| Тр           |                                                                                                                                                                                                     |                   |                   |                    |                   |                 |                 |                  |                     |                     |                     |                     |                  |                 |

• When execution control "EN" = 1, will send the pulse to output point OT with the "ON" state for To ms and period as Tp. OT must be a transistor output point on the main unit. When "EN" is 0, the output point will be OFF.



- The units for Tp and To are mS, resolution is 1 mS. The minimum value for To is 0 (under such case the output point OT will always be OFF), and its maximum value is the same as Tp (under such case the output point OT will always be on). If To > Tp there will be an error, this instruction will not be carried out, and the error flag "ERR" will set to 1.
- This instruction can only be used once.


| FUN 83<br>SPD |                            |                   |                   |                    | SPE               | ED D            | )ETE            | стю              | N             |                     |                     |            |                  | F               | FUN 83<br>SPD |
|---------------|----------------------------|-------------------|-------------------|--------------------|-------------------|-----------------|-----------------|------------------|---------------|---------------------|---------------------|------------|------------------|-----------------|---------------|
| Detection con | trol—El                    | ۲ <sup>83.</sup>  | :                 | <u>ymbol</u>       | — OVF             | — Ov            | erflow          |                  | TI : Sa<br>(u | ampline<br>Inits in | g durat<br>mS)      |            | speed<br>ts      | detecti         | on            |
| Rar           | nge X                      | WX                | WY                | WM                 | WS                | TMR             | CTR             | HR               | IR            | OR                  | SR                  | ROR        | DR               | K               |               |
| Ope-<br>rand  | X0<br> <br> <br> <br> <br> | WX0<br> <br>WX240 | WY0<br> <br>WY240 | WM0<br> <br>WM1896 | WS0<br> <br>WS984 | T0<br> <br>T255 | C0<br> <br>C255 | R0<br> <br>R3839 |               |                     | R3968<br> <br>R4167 |            | D0<br> <br>D4095 | 1<br> <br>32767 |               |
| S             | 0                          |                   |                   |                    |                   |                 |                 |                  |               |                     |                     |            |                  |                 |               |
| TI            |                            | 0                 | $\bigcirc$        | 0                  | $\bigcirc$        | $\bigcirc$      | $\bigcirc$      | 0                | 0             | $\bigcirc$          | $\bigcirc$          | $\bigcirc$ | $\bigcirc$       | $\bigcirc$      |               |
| D             |                            |                   | $\bigcirc$        | $\bigcirc$         | $\bigcirc$        | $\bigcirc$      | $\bigcirc$      | $\bigcirc$       | $\bigcirc$    | $\bigcirc$          | ○*                  | <b>O*</b>  | $\bigcirc$       |                 |               |

- This instruction uses the interrupt feature of the 8 high speed input points (X0~X7) on the PLC main unit to detect the frequency of the input signal. Within a specific sampling time (TI), it will calculate the input pulse count for S input point, and indirectly find the revolution speed of rotating devices (such as motors).
- While use this instruction to detect the rotating speed of devices, The application should design to generate more pulse per revolution in order to get better result, but the sum of input frequency of all detected signals should under 5KHz, otherwise the WDT may occur.
- The D register for storing results uses 3 successive 16-bit registers starting from D (D0~D2). Besides D0 which is used to store counting results, D1 and D2 are used to store current counting values and sampling duration.
- When detection control "EN" = 1, it starts to calculate the pulse count for the S input point, which can be shown in D1 register. Meanwhile the sampling timer (D2) is switched on and keeps counting until the value of D2 is reach to the sampling period (TI). The final counted value is stored into the D0 register, and then a new counting cycle is started again. The sampling counting will go on repeating until "EN" = 0.
- Because D0 only has 16 bits, so the maximum count is 32767. If the sampling period is too long or the input pulse is too fast then the counted value may exceed 32767, under that case the overflow flag will set to 1, and the counting action will stop.
- Because the sampling period TI is already known and if every revolution of attached rotating device produces "n" pulses, then the following equation can be used to get the revolution

speed : N = 
$$\frac{(D0) \times 60}{n \times TI} \times 10^3$$
 (rpm)  
  
X20  
  
X20  
  
S : X 0  
TI : 1000  
D : R 0

 In the above example, if every revolution of the rotating device produces 20 pulses (n = 20), and the R0 value is 200, then the revolution per minute speed "N" is as

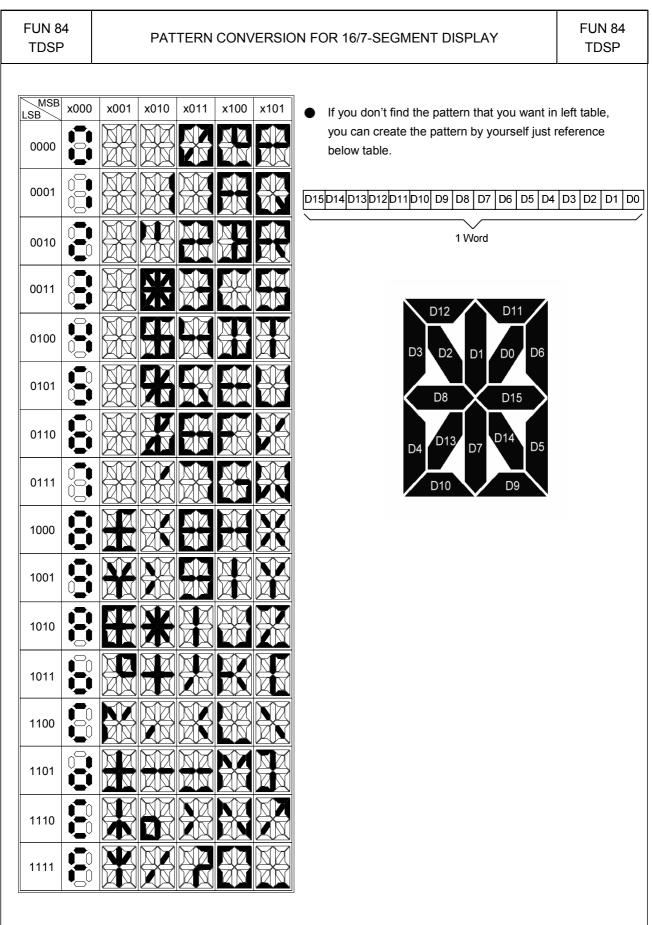
follows : 
$$N = \frac{(200) \times 60}{60 \times 1000} \times 10^3 = 200 \text{ rpm}$$

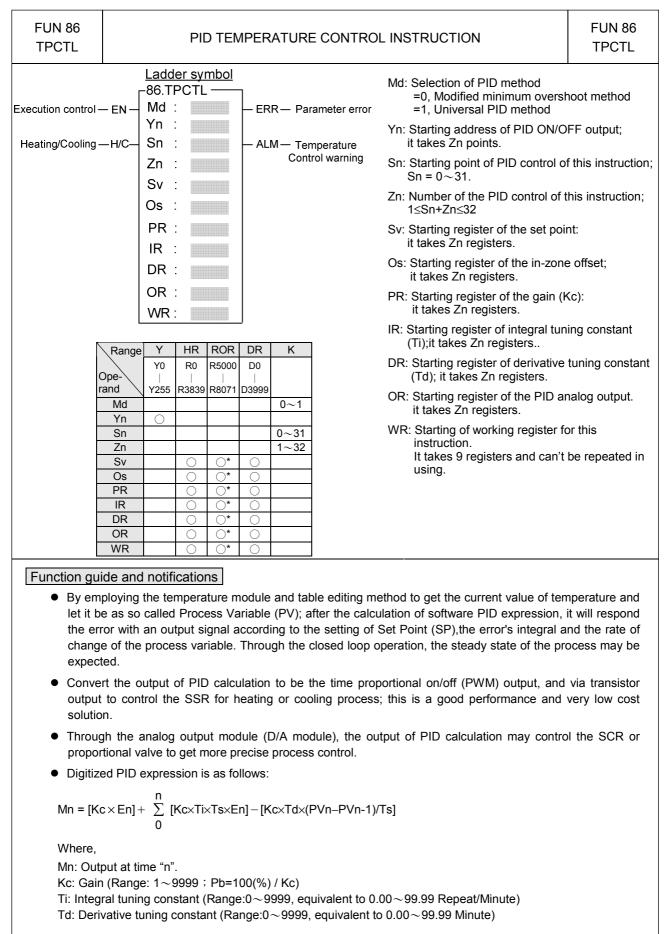


| FUN 84<br>TDSP               | PAT              | TERN CO       | NVE        | RSIO       | N FO       | R 16/7     | 7-SEGME      | ENT DISF    | PLAY               | FUN 84<br>TDSP |
|------------------------------|------------------|---------------|------------|------------|------------|------------|--------------|-------------|--------------------|----------------|
|                              | Lado             | der symbo     | 4          |            |            |            |              |             |                    |                |
|                              |                  | DSP           |            |            |            | Md         | : Mode se    | election    |                    |                |
| Execution contro             |                  |               |            |            |            | <b>S</b> : | Starting a   | ddress of I | begin converted    | characters     |
|                              | S S              |               |            |            |            |            | : Start of c |             | 0                  |                |
|                              |                  |               |            |            |            | NI :       | Lenath of    | f character |                    |                |
| Input contro                 |                  |               |            |            |            |            | •            |             | store the convert  | ted pattern    |
|                              | N∟               | •             |            |            |            |            | •            |             | pined with V, Z, F | •              |
| Input contro                 |                  | •             |            |            |            |            |              | ndirect ad  |                    |                |
|                              |                  |               |            |            |            | ieg        |              |             | aressing           |                |
|                              |                  |               |            |            |            |            |              |             |                    |                |
|                              |                  |               | HR         | OR         | ROR        | DR         | К            | XR          |                    |                |
|                              |                  | Range         | R0         | R3904      |            | D0         |              | V · Z       |                    |                |
|                              |                  | Operand       | R3830      | <br>R3967  | <br>R8071  | <br>D4095  | 16/32 bit    | P0~P9       |                    |                |
|                              |                  | Md            | 10000      | 10307      | 10071      | D-1035     | 0~1          | 1010        |                    |                |
|                              |                  | S             | 0          | 0          | 0          | 0          | 0            | 0           |                    |                |
|                              |                  | Ns            | 0          | 0          | $\bigcirc$ | $\bigcirc$ | 0            |             |                    |                |
|                              |                  | NI            | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0            |             |                    |                |
|                              |                  | D             | $\bigcirc$ | $\bigcirc$ | <b>O*</b>  | $\bigcirc$ |              |             |                    |                |
|                              |                  |               |            |            |            |            |              |             |                    |                |
|                              |                  |               |            |            |            |            |              |             |                    |                |
| <ul> <li>This ins</li> </ul> | truction is use  | ed for FB     | s-7SG      | 31/FBs     | -7SG2      | 2 mod      | lule's ap    | olication.  | It can convert     | the source     |
| alphanur                     | neric characters | s into displa | ay pat     | terns      | suited     | for 16     | segment      | encoded     | mode display or    | perform the    |
| leading z                    | ero substitution | of the pack   | ed B       | CD nu      | mber f     | for non    | -decoded     | mode 7 se   | egment display.    |                |
|                              |                  |               |            |            |            |            |              |             | 0                  |                |
| When example                 | ecution control  | "EN" = 1      | , and      | input      | "OF        | F" = 0     | , input "C   | N" = 0, if  | Md = 0, this in    | struction will |

● When execution control "EN" = 1, and input "OFF" = 0, input "ON" = 0, if Md = 0, this instruction will perform the display pattern conversion, where S is the starting address storing the begin converted characters, Ns is the pointer to locate the starting address character, NI tells the length of begin converted characters, and D is the starting address to store the converted result.

Byte 0 of S is the "1st" displaying character, byte 1 of S is the 2nd displaying character,.....


Ns is the pointer to tell where the start character is.


NI is the character quantity for conversion.

After execution, each 8-bit character of the source will be converted into the corresponding 16-bit display pattern.

- When input "OFF" = 1, all bits of display pattern will be 'off' if Md = 0. if Md=1, all BCD codes will be substituted by blank code(0F)
- When input "ON" = 1,all bits of display pattern will be 'on' if Md = 0. if Md = 1, all BCD codes will be substituted by code 8(all light).
- Please refer Chapter 16 "FBs-7SG display module" for more detail description.

16-Segment display patterns shown as below :





| FUN 86 |  |
|--------|--|
| TPCTL  |  |

# PID TEMPERATURE CONTROL INSTRUCTION

FUN 86 TPCTL

PVn : Process variable at time "n"

PVn\_1: Process variable when loop was last solved

En: Error at time "n" ; E= SP – PVn

Ts: Solution interval for PID calculation (Valid value are 10, 20, 40, 80,160, 320; the unit is in 0.1Sec)

#### PID Parameter Adjustment Guide

- As the gain (Kc) adjustment getting larger, the larger the proportional contribution to the output. This can
  obtain a sensitive and rapid control reaction. However, when the gain is too large, it may cause oscillation.
  Do the best to adjust "Kc" larger (but not to the extent of making oscillation), which could increase the
  process reaction and reduce the steady state error.
- Integral item may be used to eliminate the steady state error. The larger the number (Ti, integral tuning constant), the larger the integral contribution to the output. When there is steady state error, adjust the "Ti" larger to decrease the error.

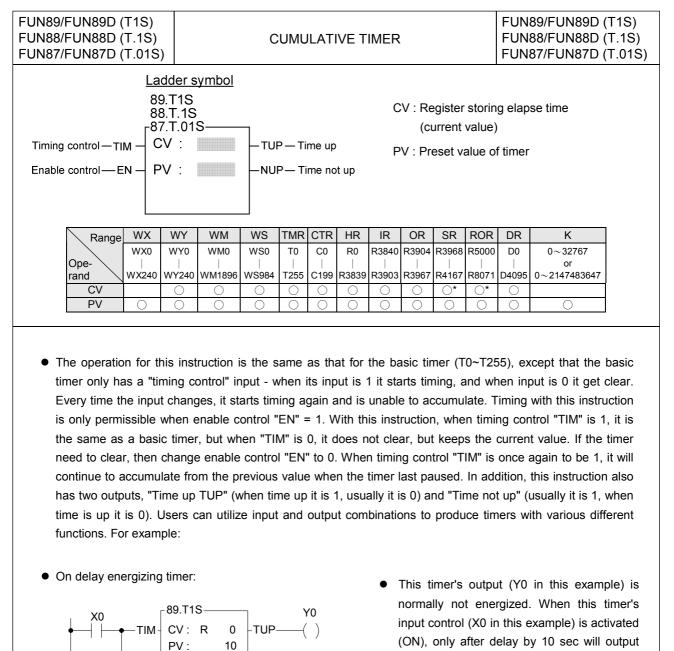
When the "Ti" = 0, the integral item makes no contribution to the output.

For exam., if the reset time is 6 minutes, Ti=100/6=17 ; if the integral time is 5 minutes, Ti=100/5=20.

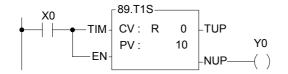
Derivative item may be used to make the process smoother and not too over shoot. The larger the number (Td, derivative tuning constant), the larger the derivative contribution to the output. When there is too over shoot, adjust the "Td" larger to decrease the amount of over shoot. When the "Td" = 0, the derivative item makes no contribution to the output.

For exa, if the rate time is 1 minute, then the Td = 100; if the differential time is 2 minute, then the Td = 200.

- Properly adjust the PID parameters can obtain an excellent result for temperature control.
- The default solution interval for PID calculation is 4 seconds (Ts=40)
- The default of gain value (Kc) is 110, where Pb=1000/110x0.1% = 0.91%; the system full range is 1638°, it means 1638x0.91 = 14.8° to enter proportional band control.
- The default of integral tuning constant is 17, it means the reset time is 6 minutes (Ti=100/6=17).
- The default of derivative tuning constant is 50, it means the rate time is 0.5 minutes (Td=50).
- When changing the PID solution interval, it may tune the parameters Kc, Ti, Td again.


#### Instruction guide

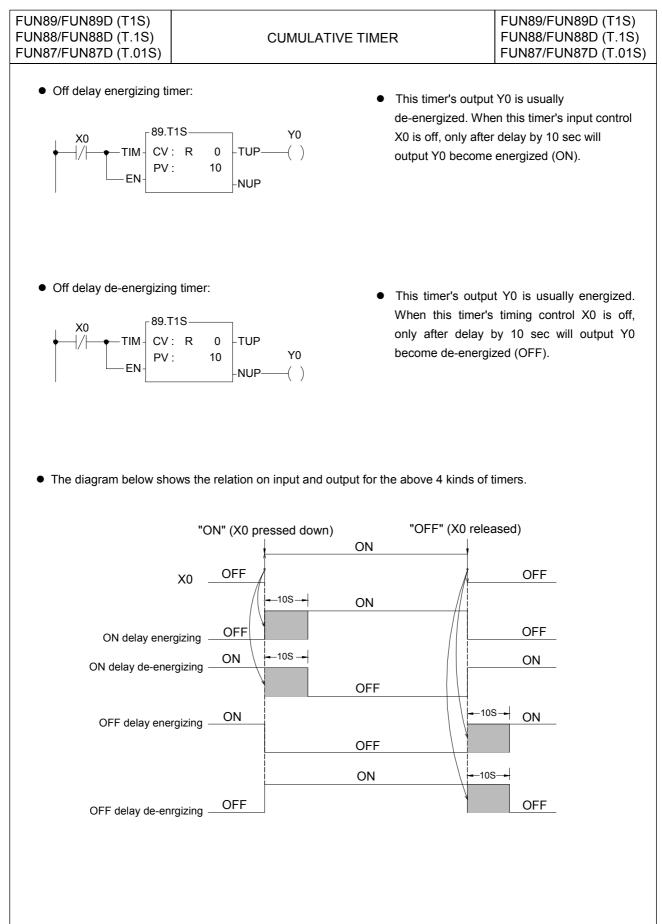
- FUN86 will be enabled after reading all temperature channels.
- When execution control "EN" = 1, it depends on the input status of H/C for PID operation to make heating (H/C=1) or cooling (H/C=0) control. The current values of measured temperature are through the multiplexing temperature module ; the set points of desired temperature are stored in the registers starting from Sv. With the calculation of software PID expression, it will respond the error with an output signal according to the setting of set point, the error's integral and the rate of change of the process variable. Convert the output of PID calculation to be the time proportional on/off (PWM) output, and via transistor output to control the SSR for heating or cooling process; where there is a good performance and very low cost solution. It may also apply the output of PID calculation (stored in registers starting from OR), by way of D/A analog output module, to control SCR or proportional valve, so as to get more precise process control.
- When the setting of Sn, Zn (0 ≤ Sn ≤ 31 and 1 ≤ Zn ≤ 32, as well as 1 ≤ Sn + Zn ≤ 32) comes error, this instruction will not be executed and the instruction output "ERR" will be ON.


This instruction compares the current value with the set point to check whether the current temperature falls within deviation range (stored in register starting from Os). If it falls in the deviation range, it will set the in-zone bit of that point to be ON; if not, clear the in-zone bit of that point to be OFF, and make instruction output "ALM" to be ON.

|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| FUN 86<br>TPCTL               | PID TEMPERATURE CONTROL INSTRUCTION                                                                                                                                                                                                                                                                                                                                                                                                              | FUN 86<br>TPCTL                    |
| point o<br>values<br>will set | mean time, this instruction will also check whether highest temperature warning (the regist of highest temperature warning is R4008). When successively scanning for ten time of measured temperature are all higher than or equal to the highest warning set point, to be ON and instruction output "ALM" will be on. This can avoid the safety problem ature out of control, in case the SSR or heating circuit becomes short.                 | es the current the warning bit     |
| or the<br>registe<br>desired  | struction can also detect the unable to heat problem resulting from the SSR or heating ci<br>obsolete heating band. When output of temperature control turns to be large power<br>r) successively in a certain time (set in R4007 register), and can not make current tem<br>d range, the warning bit will set to be ON and instruction output "ALM" will be ON.                                                                                 | (set in R4006<br>operature fall in |
| ד<br>v<br>ii                  | tarting of working register for this instruction. It takes 9 registers and can't be repeated in<br>The content of the two registers WR+0 and WR+1 indicating that whether the current tem<br>within the deviation range (stored in registers starting from Os). If it falls in the deviation<br>n-zone bit of that point will be set ON; if not, the in-zone bit of that point will be cleared Ol<br>it definition of WR+0 explained as follows: | perature falls<br>range, the       |
|                               | Bit0=1, it represents that the temperature of the Sn+0 point is in-zone<br>Bit15=1, it represents that the temperature of the Sn+15 point is in-zone.                                                                                                                                                                                                                                                                                            |                                    |
| BI                            | t definition of WR+1 explained as follows:<br>Bit0=1, it represents that the temperature of the Sn+16 point is in-zone…<br>Bit15=1, it represents that the temperature of Sn+31 point is in-zone.                                                                                                                                                                                                                                                |                                    |
| V V                           | The content of the two registers WR+2 and WR+3 are the warning bit registers, they whether there exists the highest temperature warning or heating circuit opened.                                                                                                                                                                                                                                                                               | indicate that                      |
|                               | it definition of WR+2 explained as follows:<br>Bit0=1, it means that there exists the highest warning or heating circuit opened at the Sr<br>Bit15=1, it means that there exists the highest warning or heating circuit opened at the S                                                                                                                                                                                                          | -                                  |
| B                             | it definition of WR+11 explained as follows:                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| F                             | Bit0=1, it means that there exists the highest warning or heating circuit opened at the Sr Bit15=1, it means that there exists the highest warning or heating circuit opened at the Registers of WR+4 $\sim$ WR+8 are used by this instruction.                                                                                                                                                                                                  |                                    |
| ● It need                     | s separate instructions to perform the heating or cooling control.                                                                                                                                                                                                                                                                                                                                                                               |                                    |
| Specific re                   | gisters related to FUN86                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |
| ● R4005                       | The content of Low Byte to define the solution interval between PID calculation =0, perform the PID calculation every 1 seconds.                                                                                                                                                                                                                                                                                                                 |                                    |
|                               | <ul><li>=1, perform the PID calculation every 2 seconds.</li><li>=2, perform the PID calculation every 4 seconds. (System default)</li></ul>                                                                                                                                                                                                                                                                                                     |                                    |
|                               | =3, perform the PID calculation every 8 seconds. (System default)                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|                               | =4, perform the PID calculation every 16 seconds.                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|                               | ≥5, perform the PID calculation every 32 second.                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |
| :                             | The content of High Byte to define the cycle time of PID ON/OFF (PWM) output.                                                                                                                                                                                                                                                                                                                                                                    |                                    |
|                               | =0 · PWM cycle time is 1 seconds.                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|                               | <ul><li>=1 , PWM cycle time is 2 seconds. (System default)</li><li>=2 , PWM cycle time is 4 seconds.</li></ul>                                                                                                                                                                                                                                                                                                                                   |                                    |
|                               | =3 , PWM cycle time is 8 seconds.                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
|                               | =4 , PWM cycle time is 16 seconds.                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
|                               | $\geq$ 5 · PWM cycle time is 32 second.                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |
| wher<br>Note 2: The           | n changing the value of R4005, the execution control "EN" of FUN86 must be set at 0.<br>In execution control "EN" =1, it will base on the latest set point to perform the PID calculat<br>smaller the cycle time of PWM, the more even can it perform the heating. However, th<br>is PLC scan time will also become greater. For the best control, it can base on the sca                                                                        | ion.<br>e error caused             |
| -                             | just the solution interval of PID calculation and the PWM cycle time.                                                                                                                                                                                                                                                                                                                                                                            |                                    |

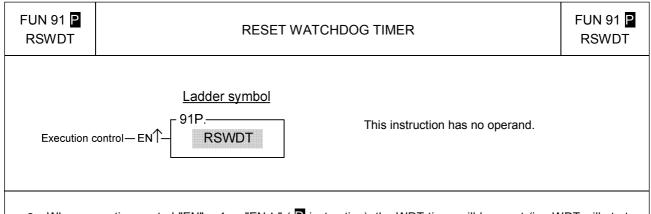
| FUN 86<br>TPCTL | PID TEMPERATURE CONTROL INSTRUCTION                                                                                                                                                                                       | FUN 8<br>TPCT |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| ● R4006:        | The setting point of large power output detection for SSR or heating circuit opened, or obsolete. The unit is in % and the setting range falls in $80 \sim 100(\%)$ ; system default is                                   | •             |
| ● R4007:        | The setting time to detect the continuing duration of large power output while SSR or h opened, or heating band obsolete. The unit is in second and the setting range falls i (seconds); system default is 600 (seconds). | -             |
| ● R4008:        | The setting point of highest temperature warning for SSR, or heating circuit short det unit is in 0.1 degree and the setting range falls in $100 \sim 65535$ ; system default is $3500^{\circ}$ ).                        |               |
| ● R4012:        | Each bit of R4012 to tell the need of PID temperature control.<br>Bit0=1 means that 1 <sup>st</sup> point needs PID temperature control.<br>Bit1=1 means that 2 <sup>nd</sup> point needs PID temperature control.        |               |
|                 | <ul> <li>Bit15=1 means that 16<sup>th</sup> point needs PID temperature control.</li> <li>(The default of R4012 is FFFFH)</li> </ul>                                                                                      |               |
| ● R4013:        | Each bit of R4013 to tell the need of PID temperature control.<br>Bit0=1 means that 17 <sup>th</sup> point needs PID temperature control.<br>Bit1=1 means that 18 <sup>th</sup> point needs PID temperature control.      |               |
|                 | Bit15=1 means that 32 <sup>th</sup> point needs PID temperature control.<br>(The default of R4013 is FFFFH)                                                                                                               |               |
| bit of F        | execution control "EN"=1 and the corresponding bit of PID control of that point is ON (co<br>24012 or R4013 must be 1), the FUN86 instruction will perform the PID operation and re<br>tion with the output signal.       | -             |
|                 | execution control "EN"=1 and the corresponding bit of PID control of that point is OFF (co<br>24012 or R4013 must be 0), the FUN86 will not perform the PID operation and the outpur<br>OFF.                              | -             |
|                 | der program may control the corresponding bit of R4012 and R4013 to tell the FUN86 perform the PID control, and it needs only one FUN86 instruction.                                                                      | to perform    |
|                 |                                                                                                                                                                                                                           |               |
|                 |                                                                                                                                                                                                                           |               |
|                 |                                                                                                                                                                                                                           |               |




• On delay de-energizing timer:



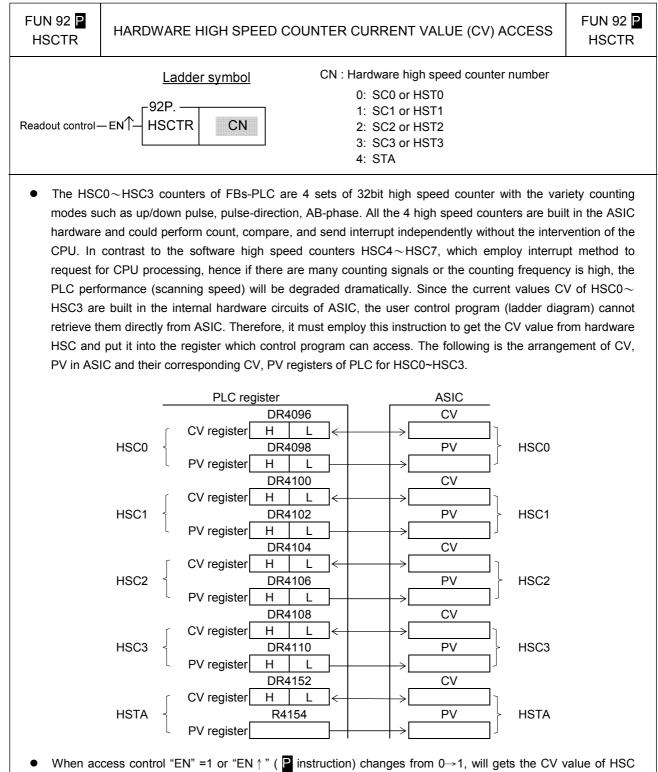
NUP


 The output Y0 of this timer is usually energized. When this timer's input control X0 is on, only after delay by 10 sec will the output become de-energized (OFF).

Y0 become energized (ON).

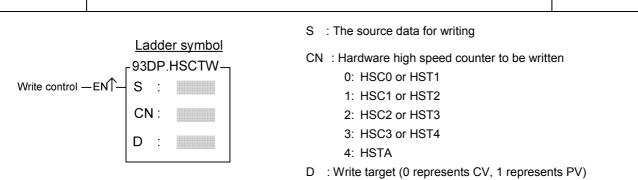


| FUN 90 P<br>WDT | WATCHDOG TIMER                                                                                                | FUN 90 P<br>WDT |
|-----------------|---------------------------------------------------------------------------------------------------------------|-----------------|
| Execution contr | Ladder symbol         90P.       N : The watchdog time. The range of N is 5         n − EN↑       WDT       N | 5~120, unit     |

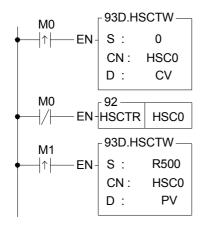

- When execution control "EN" = 1 or "EN ↑" ( p instruction) transition from 0 to 1, will set the watchdog time to Nx10ms. If the scan time exceeds this preset time, PLC will shut down and not execute the application program.
- The WDT feature is designed mainly as a safety consideration from the system view for the application. For example, if the CPU of PLC is suddenly damaged, and there is no way to execute the program or refresh I/O, then after the WDT time expired, the WDT will automatically switch off all the I/Os, so as to ensure safety. In certain applications, if the scan time is too long, it may cause safety problems or problems of non-conformance with control requirements. This instruction can used to establish the limitation of the scan time that you require.
- Once the WDT time has been set it will always be kept, and there is no need to set it again on each scan. Therefore, in practice this instruction should use the **P** instruction.
- Default WDT time is 0.25 sec.
- For the operation principles of WDT please refer to the RSWDT(FUN 91) instruction.



- When execution control "EN" = 1 or "EN ↑ " ( P instruction), the WDT timer will be reset (i.e. WDT will start timing again from 0).
- The functions of WDT have already been described in FUN90 (WDT instruction). The operation principles of watch dog timer are as follows:


The watchdog timer is normally implemented by a hardware one-shot timer (it can not be software, otherwise if CPU fail, the timer becomes ineffective, and safeguards are quite impossible). "One-shot" means that after triggered the timer once, the timing value will immediately be reset to 0 and timing will restart. If WDT has begun timing, and never triggered it again, then the WDT timing value will continue accumulating until it reach the preset value of N, at that time WDT will be activated, and PLC will be shut down. If trigger the WDT once every time before the WDT time N has been reached, then WDT will never be activated. PLC can use this feature to ensure the safety of the system. Each time when PLC enters into system housekeeping after finished the program scanning and I/O refresh, it will usually trigger WDT once, so if the system functions normally and scan time does not exceed WDT time then WDT is never activated. However, if CPU is damaged and unable to trigger WDT, or the scan time is too long, then there will not be enough time to trigger WDT within the period N, WDT will be activated and will shut off PLC.

 In some applications, when you set the WDT time (FUN90) to desire, the scan time of your program in certain situations may temporarily exceed the preset time of WDT. This situation can be anticipated and allowed for, and you naturally do not wish PLC to shut down for this reason. You can use this instruction to trigger WDT once and avoid the activation of WDT. This is the main purpose of this instruction.




- When access control "EN" =1 or "EN ↑" ( instruction) changes from 0→1, will gets the CV value of HSC designated by CN from ASIC and puts into the HSC corresponding CV register (i.e. the CV of HSC0 will be read and put into DR4096 or the CV of HSC1 will be read and put into DR4090.
- Although the PV within ASIC has a corresponding PV register in CPU, but it is not necessary to access it (actually it can't be) for that the PV value within ASIC comes from the PV register in CPU.
- HSTA is a timer, which use 0.1ms as its time base. The content of CV represents elapse time counting at 0.1mS tick.
- For detailed applications, please refer to Chapter 10 "The high speed counter and high speed timer of FBs-PLC".

FUN 93 P HSCTW HARDWARE HIGH SPEED COUNTER CURRENT VALUE AND PRESET VALUE WRITING FUN 93 P HSCTW



- Please refer first to FUN92 for the relation between the CV or PV value of HSC0~HSC3 and HSTA within ASIC and their corresponding CV and PV registers in CPU.
- When write control "EN"=1 or "EN↑" ( instruction) changes from 0→1, it writes the content of CV or PV register of high speed counter designed by CN of CPU, to the corresponding CV or PV of HSC within ASIC.
- It is quit often to set the PV value for most application program, When the count value reaches the preset value, the counter will send out interrupt signal immediately. By way of the interrupt service program, you can implement different kinds of precision counting or positioning control.
- When there is an interrupt of power supply for FBs-PLC, the values of current value registers CV of HSC0~ HSC3 within ASIC will be read out and wrote into the HSC0~HSC3 CV registers (with power retentive function) of CPU automatically. When power comes up, these CV values will be restored to ASIC. However, if your application demands that when power is on, the values should be cleared to 0 or begin counting from a certain value, then you have to use this instruction to write in the CV value for HSC in ASIC.
- When write a non-zero value into the PV register of HSTA will cause the HSTAI interrupt subroutine to be executed for every PV × 0.1ms.
- For detailed applications, please refer Chapter 10 "The high speed counter and high speed timer of FBs-PLC".

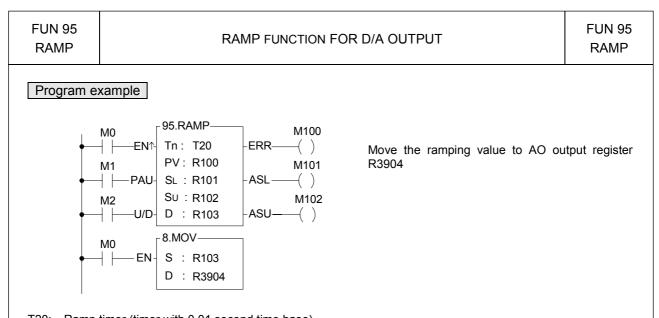


- As the program in the left diagram, when M0 changes from 0→1, it clears the current value of HSC0 to 0, and writes into ASIC hardware through FUN93.
- When M0 is 0, it reads out the current counting value.
- When M1 changes from 0→1, it moves DR500 to DR4098, and writes the preset value into ASIC hardware through FUN93.
- Whenever the current value equals to the DR500, The HSC0I interrupt sub program will be executed.

| FUN 94<br>ASCWR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                   |                                                                                                                                                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                           | SCII \                                                                                                                                          | NRIT                                                                                                                                      | E                                                                                                                   |                                                                                                         |                                                                                                        |                                                                                                            |                                                                                       |                                                            |                                                                                     |                                                                           | FUN 94<br>ASCWR                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                   | Ladder                                                                                                                                                                      | symb                                                                                                                                                                       | ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                           |                                                                                                                     |                                                                                                         |                                                                                                        |                                                                                                            |                                                                                       |                                                            |                                                                                     |                                                                           |                                                                                                                                       |
| Output control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | —en↑-                                                                                                                                                                                                             | 94D.AS<br>MD:<br>S::                                                                                                                                                        | SCWR                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CT— Act                                                                                                                                                     | ting                                                                                                                                            |                                                                                                                                           | M                                                                                                                   | =(                                                                                                      | itput n<br>), outp<br>hers, i                                                                          | ut to d                                                                                                    |                                                                                       |                                                            |                                                                                     | -                                                                         |                                                                                                                                       |
| Pause control -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | – PAU–                                                                                                                                                                                                            | Pt :                                                                                                                                                                        |                                                                                                                                                                            | — — EI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RR— Err                                                                                                                                                     | or                                                                                                                                              |                                                                                                                                           | S                                                                                                                   | : Sta                                                                                                   | rting r                                                                                                | egiste                                                                                                     | er of f                                                                               | file o                                                     | lata.                                                                               |                                                                           |                                                                                                                                       |
| Abort output -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | — ABT —                                                                                                                                                                                                           |                                                                                                                                                                             |                                                                                                                                                                            | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DN — Ou                                                                                                                                                     | itput co                                                                                                                                        | mplete                                                                                                                                    |                                                                                                                     | ins                                                                                                     | -                                                                                                      | lt tak                                                                                                     | en u                                                                                  | p 8                                                        | regis                                                                               | ster                                                                      | instruction<br>s and can't<br>am.                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u></u>                                                                                                                                                                                                           | 1.00                                                                                                                                                                        | 1407                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                             |                                                                                                                                                 | 075                                                                                                                                       |                                                                                                                     |                                                                                                         |                                                                                                        |                                                                                                            |                                                                                       | _                                                          |                                                                                     |                                                                           | 1                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Range<br>Ope-                                                                                                                                                                                                     | WX0                                                                                                                                                                         | WY<br>WY0                                                                                                                                                                  | WM<br>WMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WS<br>WS0                                                                                                                                                   | TMR           T0                                                                                                                                | C0                                                                                                                                        | HR<br>R0                                                                                                            |                                                                                                         | OR<br>R3904                                                                                            |                                                                                                            |                                                                                       | 00                                                         | DR<br>D0<br>                                                                        | К<br>0<br>                                                                |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rand ∖<br>MD                                                                                                                                                                                                      | WX240                                                                                                                                                                       | WY240                                                                                                                                                                      | WM1896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WS984                                                                                                                                                       | T255                                                                                                                                            | C255                                                                                                                                      | R3839                                                                                                               | R3903                                                                                                   | R3967                                                                                                  | R4167                                                                                                      | R807                                                                                  | 71 D                                                       | 4095                                                                                | 1                                                                         |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S                                                                                                                                                                                                                 | 0                                                                                                                                                                           | 0                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                           | $\bigcirc$                                                                                                                                      | 0                                                                                                                                         | 0                                                                                                                   | 0                                                                                                       | 0                                                                                                      | 0                                                                                                          | 0                                                                                     |                                                            | 0                                                                                   | 0                                                                         |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pt                                                                                                                                                                                                                |                                                                                                                                                                             | $\bigcirc$                                                                                                                                                                 | $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\bigcirc$                                                                                                                                                  | $\bigcirc$                                                                                                                                      | $\bigcirc$                                                                                                                                | 0                                                                                                                   |                                                                                                         | $\bigcirc$                                                                                             | ○*                                                                                                         | *                                                                                     | k                                                          | $\bigcirc$                                                                          |                                                                           |                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /ID=0 and<br>ommunica                                                                                                                                                                                             | -                                                                                                                                                                           | contro                                                                                                                                                                     | I "EN ↑ "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ' change                                                                                                                                                    | es from                                                                                                                                         |                                                                                                                                           | I, it tra                                                                                                           | ansmi                                                                                                   | s the                                                                                                  | ASCII                                                                                                      | data                                                                                  |                                                            | 0                                                                                   | starl                                                                     | ting from S                                                                                                                           |
| to the c<br>S file d<br>explana<br>directly<br>(the det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ommunica<br>ata can be<br>ation of ch<br>by chang<br>tails descr<br>to 1. If th                                                                                                                                   | ation point<br>e edited<br>mapter 1<br>e the va<br>ibed in t                                                                                                                | contro<br>rt 1 (Po<br>I with t<br>I5 "AS<br>alue of<br>chapte                                                                                                              | I "EN ↑ "<br>ort1), un<br>the prog<br>CII func<br><sup>5</sup> data re<br>er 15), ot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ' change<br>til reach<br>ramming<br>tion app<br>gisters.                                                                                                    | es from<br>end o<br>g softv<br>plicatio<br>Howe<br>e, this i                                                                                    | f file.<br>vare F<br>vn".). I<br>ver, th<br>nstruc                                                                                        | PROL/<br>If neco<br>ne edir<br>ation w                                                                              | ADDE<br>essary<br>ted da<br><i>v</i> ill hal                                                            | R or V<br>/ the i<br>ita mu<br>t the ti                                                                | VinPro<br>user c<br>st be<br>ransm                                                                         | olado<br>can a<br>follov<br>issio                                                     | a wh<br>der<br>also<br>w th<br>n ar                        | (plea:<br>edit<br>ne AS                                                             | se r<br>the<br>SCII                                                       | ting from S<br>refer to the<br>ASCII file<br>file format<br>e error flag<br>d and "DN"                                                |
| <ul> <li>to the c</li> <li>S file diexplana directly (the def "ERR" tis set to</li> <li>The con instruct During</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ommunica<br>ata can be<br>ation of ch<br>by chang<br>tails descr<br>to 1. If th<br>to 1.<br>ntrol input<br>ion starts t                                                                                           | e edited<br>hapter 1<br>e the va<br>ibed in<br>he entire<br>of this<br>the exec<br>hission,                                                                                 | contro<br>rt 1 (Po<br>I with t<br>I5 "AS<br>alue of<br>chapte<br>e file is<br>instruc<br>cution,<br>the ac                                                                 | I "EN ↑ "<br>ort1), un<br>the prog<br>CII func<br>data re<br>or 15), ot<br>correct<br>correct<br>cuntil fini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ' change<br>til reach<br>ramming<br>tion app<br>gisters.<br>therwise<br>ly and s<br>of positiv<br>ished th                                                  | es from<br>end o<br>g softv<br>plicatio<br>Howe<br>e, this i<br>uccess<br>/e edg<br>e trans                                                     | f file.<br>vare F<br>vn".). I<br>ver, th<br>nstruc<br>sfully f<br>e trigg<br>smissi                                                       | PROL/<br>f nece<br>tion w<br>transn<br>gered.                                                                       | ADDE<br>essary<br>ted da<br>vill hal<br>nitted,<br>One<br>the er                                        | R or W<br>the to<br>ta mu<br>t the to<br>then to<br>then to<br>the the<br>tire file                    | VinPro<br>user c<br>st be<br>ansm<br>the ou<br>the ou<br>I ↑ " cl<br>e then                                | olado<br>can a<br>follov<br>ission<br>itput<br>hang                                   | der<br>also<br>w th<br>is c<br>les t<br>exe                | (plea<br>edit<br>ne AS<br>nd se<br>ompl                                             | se r<br>the<br>SCII<br>et the<br>leteo<br>0→<br>n is                      | efer to the<br>ASCII file<br>file format<br>e error flag                                                                              |
| <ul> <li>to the c</li> <li>S file d.<br/>explana<br/>directly<br/>(the det<br/>"ERR" t<br/>is set to</li> <li>The con<br/>instruct<br/>During<br/>abort of</li> <li>This instruct</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ommunica<br>ata can be<br>ation of ch<br>by chang<br>tails descr<br>to 1. If th<br>o 1.<br>htrol input<br>ion starts t<br>the transn<br>ccurs, will                                                               | ation por<br>e edited<br>hapter 1<br>e the va<br>ibed in<br>he entire<br>of this<br>the exec<br>hission,<br>it chang<br>an be re                                            | contro<br>rt 1 (Po<br>I with t<br>I5 "AS<br>alue of<br>chapte<br>e file is<br>instruc<br>cution,<br>the ac<br>ge bacl<br>epeate                                            | I "EN ↑ "<br>ort1), un<br>the prog<br>CII func<br>data re<br>data re<br>correction<br>correction<br>tion is co<br>until fini<br>tion flag<br>k to 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ' change<br>til reach<br>ramming<br>tion app<br>gisters.<br>therwise<br>ly and s<br>of positiv<br>ished th<br>"ACT"                                         | es from<br>end o<br>g softv<br>plicatio<br>Howe<br>, this i<br>uccess<br>ve edg<br>e trans<br>will be                                           | f file.<br>vare F<br>nr".). I<br>ver, th<br>nstruc<br>sfully f<br>e trigg<br>smissi<br>kept<br>will b                                     | PROL/<br>f nece<br>tion w<br>transn<br>gered.<br>on of<br>at 1 a                                                    | ADDE<br>essary<br>ted da<br><i>v</i> ill hal<br>nitted,<br>One<br>the er<br>Il the                      | R or W<br>the to<br>the to<br>then to<br>then to<br>the the<br>time. (                                 | VinPro<br>user c<br>st be<br>ansm<br>the ou<br>the ou<br>I ↑ " cl<br>e then<br>Only w                      | olado<br>can a<br>follov<br>issio<br>itput<br>hang<br>the o                           | der<br>also<br>w th<br>n an<br>is c<br>les t<br>exe<br>out | (plea<br>edit<br>e dit<br>nd se<br>ompl<br>from<br>cution<br>put p                  | se r<br>the<br>SCII<br>et the<br>letec<br>$0 \rightarrow$<br>n is<br>vaus | refer to the<br>ASCII file<br>file format<br>e error flag<br>d and "DN"<br>1 then this<br>completed.                                  |
| <ul> <li>to the c</li> <li>S file diexplana directly (the dea "ERR" tiss set to instruct During abort or</li> <li>This instruct During abort or</li> <li>This instruct the obli</li> <li>While the oblicities of t</li></ul> | ommunica<br>ata can be<br>ation of ch<br>by chang<br>tails descr<br>to 1. If th<br>o 1.<br>htrol input<br>ion starts to<br>the transn<br>ccurs, will<br>struction ca<br>gation of u                               | e edited<br>hapter 1<br>e the va<br>ibed in<br>he entire<br>of this<br>the exec<br>hission,<br>it chang<br>an be re<br>user to r                                            | contro<br>rt 1 (Po<br>I with t<br>I 5 "AS<br>alue of<br>chapte<br>e file is<br>instruc<br>cution,<br>the ac<br>ge back<br>epeate<br>make s<br>n exect                      | I "EN ↑ "<br>ort1), un<br>the prog<br>CII func<br>data re<br>data re<br>to fata re<br>correction<br>to find<br>to find<br>t | ' change<br>til reach<br>ramming<br>tion app<br>gisters.<br>therwise<br>ly and s<br>of positiv<br>ished th<br>j "ACT"<br>I, but on<br>right exe<br>the paus | es from<br>end o<br>g softv<br>plicatio<br>Howe<br>e, this i<br>uccess<br>ve edg<br>e trans<br>will be<br>ally one<br>ecution<br>se "PA         | f file.<br>vare F<br>m".). I<br>ver, th<br>nstruc<br>sfully f<br>e trigg<br>smissi<br>kept<br>will b<br>n sequ<br>U" is                   | PROL/<br>f nece<br>to edi-<br>ton w<br>transm<br>gered.<br>on of<br>at 1 a<br>e exe<br>ience.                       | ADDE<br>essary<br>ted da<br>vill hal<br>nitted,<br>One<br>the er<br>Il the<br>cuted                     | R or W<br>v the v<br>ta mu<br>t the tr<br>then t<br>then t<br>ce "EN<br>tire file<br>time. (<br>(trans | VinPro<br>user c<br>st be<br>ansm<br>the ou<br>the ou<br>I ↑ " cl<br>e then<br>Only w<br>mit da            | olado<br>can a<br>follov<br>issio<br>itput<br>hang<br>the<br>vhen                     | der<br>also<br>w th<br>n an<br>is c<br>out<br>at an        | (plea<br>edit<br>e AS<br>nd se<br>ompl<br>from<br>cution<br>put p                   | se r<br>the<br>SCII<br>the<br>letec<br>0→<br>n is<br>paus                 | refer to the<br>ASCII file<br>file format<br>e error flag<br>d and "DN"<br>1 then this<br>completed<br>e, error, or                   |
| <ul> <li>to the c</li> <li>S file d.<br/>explana<br/>directly<br/>(the det<br/>"ERR" t<br/>is set to</li> <li>The con<br/>instruct<br/>During<br/>abort of</li> <li>This ins<br/>the obli</li> <li>While the<br/>data. It</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ommunica<br>ata can be<br>ation of ch<br>by chang<br>tails descr<br>to 1. If th<br>o 1.<br>htrol input<br>ion starts to<br>the transn<br>ccurs, will<br>struction ca<br>gation of u<br>his instruct<br>will resum | ation pol<br>e edited<br>hapter 1<br>e the va<br>ibed in<br>he entire<br>of this<br>the exect<br>hission,<br>it change<br>an be re-<br>user to r<br>tion is ir<br>he transi | contro<br>rt 1 (Po<br>I with t<br>I5 "AS<br>alue of<br>chapte<br>e file is<br>instruc<br>cution,<br>the ac<br>ge bacl<br>epeate<br>make s<br>n exect<br>mission<br>n exect | I "EN ↑ "<br>ort1), un<br>the prog<br>CII func<br>data re<br>data re<br>correction<br>correction<br>tion is correction<br>tion flag<br>k to 0.<br>dly used<br>sure the<br>ution, if "<br>n when to<br>cution, if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ' change<br>til reach<br>ramming<br>tion app<br>gisters.<br>therwise<br>ly and s<br>of positiv<br>ished the<br>about the paus<br>the paus<br>the paus       | es from<br>end o<br>g softv<br>plicatio<br>Howe<br>, this i<br>uccess<br>ve edg<br>e trans<br>will be<br>aly one<br>ecution<br>se "PA<br>se "PA | f file.<br>vare F<br>nr.). I<br>ver, th<br>nstruc<br>sfully f<br>e trigg<br>smissi<br>kept<br>will b<br>n sequ<br>U" is<br>U" is<br>U" is | PROL/<br>f nece<br>tion w<br>transn<br>gered.<br>on of<br>at 1 a<br>e exe<br>lence.<br>1, this<br>cks to<br>1, this | ADDE<br>essary<br>ted da<br>vill hal<br>nitted,<br>One<br>the er<br>Il the f<br>cuted<br>; instru<br>0. | R or W<br>the to<br>ta mut<br>the to<br>then to<br>the the<br>time. (<br>(trans                        | VinPro<br>user c<br>st be<br>ansm<br>the ou<br>the ou<br>I ↑ " cl<br>e then<br>Dnly w<br>mit da<br>will pa | olado<br>can a<br>follov<br>ission<br>tput<br>hang<br>the (<br>vhen<br>ata) a<br>ause | der<br>also<br>w th<br>is c<br>out<br>at ar<br>the         | (plea<br>edit<br>edit<br>ie AS<br>ompl<br>from<br>cution<br>put p<br>ny ce<br>trans | se r<br>the<br>SCII<br>et the<br>letec<br>0→<br>n is<br>baus              | refer to the<br>ASCII file<br>file format<br>e error flag<br>d and "DN"<br>1 then this<br>completed.<br>e, error, or<br>n time. It is |

| FUN 94<br>ASCWR               | ASCII WRITE                                                                           | FUN 94<br>ASCWR |
|-------------------------------|---------------------------------------------------------------------------------------|-----------------|
| <ul> <li>Interface</li> </ul> | signals:                                                                              |                 |
| M1927: 1                      | his signal is control by CPU, it is applied in ASCWR MD:0                             |                 |
| : (                           | DN, it represents that the RTS (connect to the CTS of PLC) of the printer is "False". |                 |
|                               | I.e. the printer is not ready or abnormal.                                            |                 |
| : (                           | DFF, it represents that the RTS of the Printer is "True"; Printer is Ready.           |                 |
| Note: Us                      | ing the M1927 associates with timer can detect if the printer is abnormal or not.     |                 |
| R4158: T                      | he setting of communication parameters (refer to section 11.7.2)                      |                 |
|                               |                                                                                       |                 |
|                               |                                                                                       |                 |
|                               |                                                                                       |                 |
|                               |                                                                                       |                 |
|                               |                                                                                       |                 |
|                               |                                                                                       |                 |
|                               |                                                                                       |                 |
|                               |                                                                                       |                 |
|                               |                                                                                       |                 |
|                               |                                                                                       |                 |
|                               |                                                                                       |                 |

| FUN 95<br>RAMP                    |               |                          | RA                  | MP FU     | NCTI                  | ON FC                                             | DR D/                                                        | A OU                                                | ΓPUT                                                             |                    |              |                                  |                          | JN 95<br>AMP |
|-----------------------------------|---------------|--------------------------|---------------------|-----------|-----------------------|---------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|--------------------|--------------|----------------------------------|--------------------------|--------------|
| Ramp control -<br>Pause control - | –en↑–<br>  1  | 95.RA<br>⊺n :<br>⊃V :    | <u>symbo</u><br>MP  | -ERI      | R —<br>L —            | PV ∶<br>S∟ ∶                                      | or the<br>Lowe<br>(ramp<br>Uppe                              | t value<br>increr<br>limit v<br>floor               | e of rar<br>nent v<br>value<br>value).<br>value)                 | np tima<br>alue of | •            |                                  | 0.01 sec<br>second       | ond)         |
| Up/Down output -                  |               | Su :                     |                     | — AS      | U —                   | D+1 :<br>S <sub>U</sub> , S <sub>I</sub>          | (ramp<br>Regis<br>Worki<br>∟ could<br>AO mo                  | ter sto<br>ng reg<br>be po                          | ring cu<br>ister<br>sitive (                                     | or nega            |              | -                                | e.<br>hen incor          | porate       |
| N                                 | – U/D –       | Su :                     | WM                  | AS        | U —<br>TMR            | D+1 :<br>S <sub>U</sub> , S <sub>I</sub>          | Regis<br>Worki<br>∟ could                                    | ter sto<br>ng reg<br>be po                          | ring cu<br>ister<br>sitive (                                     | or nega            |              | -                                |                          | porate       |
| N                                 | nge WX<br>wxo | Su :<br>D :<br>WY<br>WY0 | WM<br>WM0<br>WM1896 | WS<br>WS0 |                       | D+1:<br>S <sub>U</sub> , S <sub>I</sub><br>with / | Regis<br>Worki<br>∟ could<br>AO mo                           | ter sto<br>ng reg<br>be pc<br>dule a<br>IR<br>R3840 | ring cu<br>ister<br>sitive o<br>pplicat<br>OR<br>R3904           | or negation.       | ative v      | alue w                           | hen incor                | porate       |
| Rar<br>Ope-<br>rand<br>Tn         | nge WX<br>wxo | Su :<br>D :<br>WY<br>WY0 | WM0                 | WS<br>WS0 | TMR<br>T0             | D+1:<br>S <sub>U</sub> , S <sub>I</sub><br>with / | Regis<br>Worki<br>∟ could<br>AO mo                           | ter sto<br>ng reg<br>be pc<br>dule a<br>IR<br>R3840 | ring cu<br>ister<br>sitive o<br>pplicat<br>OR<br>R3904           | or negation.       | ROR<br>R5000 | alue w                           | hen incor<br>K<br>16-bit | porate       |
| Rar<br>Ope-<br>rand<br>Tn<br>PV   | nge WX<br>wxo | Su :<br>D :<br>WY<br>WY0 | WM0                 | WS<br>WS0 | TMR<br>T0<br>1255     | D+1:<br>S <sub>U</sub> , S <sub>I</sub><br>with / | Regis<br>Worki<br>∟ could<br>AO mo<br>HR<br>R0<br> <br>R3839 | ter sto<br>ng reg<br>be pc<br>dule a<br>IR<br>R3840 | ring cu<br>ister<br>sitive of<br>pplicat<br>OR<br>R3904<br>R3967 | or negation.       | ROR<br>R5000 | alue w<br>DR<br>D0<br> <br>D4095 | hen incor<br>K<br>16-bit | porate       |
| Rar<br>Ope-<br>rand<br>Tn         | nge WX<br>wxo | Su :<br>D :<br>WY<br>WY0 | WM0                 | WS<br>WS0 | TMR<br>T0<br><br>T255 | D+1:<br>S <sub>U</sub> , S <sub>I</sub><br>with / | Regis<br>Worki<br>∟ could<br>AO mo                           | ter sto<br>ng reg<br>be pc<br>dule a<br>IR<br>R3840 | ring cu<br>ister<br>sitive o<br>pplicat<br>OR<br>R3904           | or negation.       | ROR<br>R5000 | alue w                           | hen incor<br>K<br>16-bit | porate       |


#### Description

- Tn must be a 0.01 sec time base timer and never used in other part of program.
- PV is the preset value of ramp timer. Its unit is 10ms (0.01 second).
- When input control "EN  $\uparrow$ " changes from 0 $\rightarrow$ 1, it first reset the timer Tn to 0.

When "U/D"=1 it will load the value of SL to register D. And when M1974 = 0 it will be increased by  $S_U-S_L$  / PV every 0.01 sec or when M1974 = 1 it will increase by PV every 0.01 sec. When the D value reaches the  $S_U$  value the output "ASU" =1.

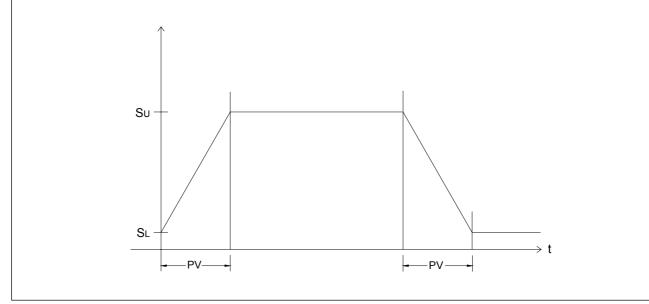
When "U/D"=0 it will load the value of  $S_U$  to register D. When M1974 = 0 it will be decreased by  $S_U-S_L$  / PV every 0.01 sec or when M1974 = 1 it will be decreased by PV every 0.01 sec. When the D value reaches the  $S_L$  value the output "ASL" =1.

- The ramping direction(U/D) is determined at the time when input control "EN ↑" changes from 0→1. After the output D start to ramp, the change of U/D is no effect.
- If it is required to pause the ramping action, it must let the input control "PAU" = 1; when "PAU"=0, and the ramping action is not completed, it will continue to complete the ramping action.
- The value of S<sub>U</sub> must be larger than S<sub>L</sub>, otherwise the ramp function will not be performed, and the output "ERR" will set to 1.
- This instruction use the register D to store the output ramping value; if the application use the D/A module to send the speed command, then speed command can be derived from the RAMP function to get a more smooth movement.
- In addition to use register D to store the ramping value, this instruction also used the register D+1 to act as internal working register; therefore the other part of program can not use the register D+1.



T20: Ramp timer (timer with 0.01 second time base)

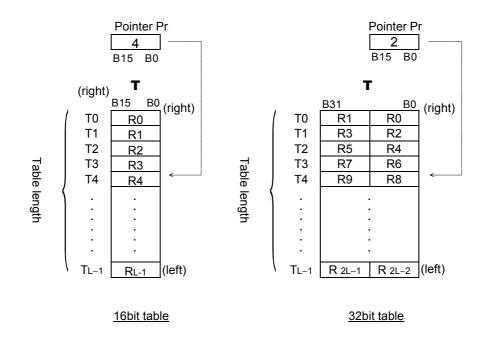
R100: preset value of ramp timer (the unit is 0.01 second, 100 for a second).


R101: Lower limit value.

R102: Upper limit value.

R103: Register storing current ramp value.

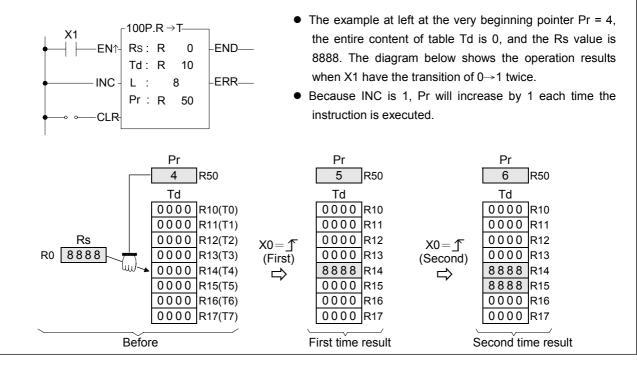
R104: Working register


- If M1974=0, When input control M0 changes from 0→1, it first reset the timer T20 to 0. If M2=1, it will load the R101 (lower limit) value into the R103, and it will increase the output with fixed value (R102-R101 / R100) for every 0.01 second and stores it to register R103. When the T2 timer going up to the preset value R100, the output value equals to R102, and the output M102 will set to 1. If M2=0, will load the R102 (upper limit) value into the R103, and it will decrease the output amount with fixed ratio (R102-R101 / R100) for every 0.01 second and store it to register R103. The T2 timer going up to the preset value R100, the output value equals to R102, and the output amount with fixed ratio (R102-R101 / R100) for every 0.01 second and store it to register R103. The T2 timer going up to the preset value R100, the output value equals to R102, and the output M101 will set to 1.
- M1=1, pause the ramping action.
- The value of R102 must be greater than R101, otherwise the ramp action will not be performed, and the output M100 will set to 1.



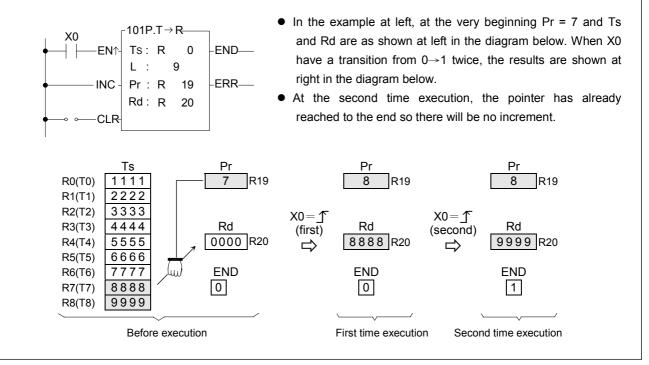
| Fun No. | Mnemonic | Functionality               | Fun No. | Mnemonic | Functionality |
|---------|----------|-----------------------------|---------|----------|---------------|
| 100     | R→T      | Register to table data move | 107     | T_FIL    | Table fill    |
| 101     | T→R      | Table to register data move | 108     | T_SHF    | Table shift   |
| 102     | T→T      | Table to table data move    | 109     | T_ROT    | Table rotate  |
| 103     | BT_M     | Block table move            | 110     | QUEUE    | Queue         |
| 104     | T_SWP    | Block table swap            | 111     | STACK    | Stack         |
| 105     | R-T_S    | Register to table search    | 112     | BKCMP    | Block compare |
| 106     | T-T_C    | Table to table compare      | 113     | SORT     | Data Sort     |

# Table Instructions

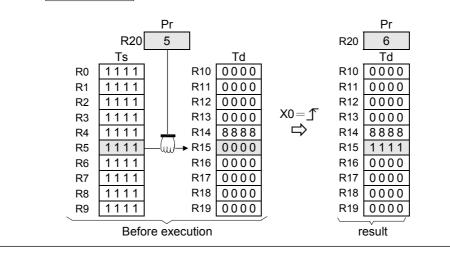

- A table consists of 2 or more consecutive registers (16 or 32 bits). The number of registers that comprise the table is called the table length (L). The operation object of the table instructions always takes the register as unit (i.e. 16 or 32 bit data).
- The operation of table instructions are used mostly for data processing such as move, copy, compare, search etc, between tables and registers, or between tables. These instructions are convenient for application.
- Among the table instructions, most instructions use a pointer to specify which register within a table will be the target of operation. The pointer for both 16 and 32-bit table instructions will always be a 16-bit register. The effective range of the pointer is 0 to L-1, which corresponds to registers T<sub>0</sub> to T<sub>L-1</sub> (a total of L registers). The table shown below is a schematic diagram for 16-bit and 32-bit tables.
- Among the table operations, shift left/right, rotate left/right operations include a movement direction. The direction toward the higher register is called left, while the direction toward the lower register is called right, as shown in the diagram below.



| <sup>-</sup> UN100 <b>D</b> | REGISTER TO TABLE MOVE |                    |                     |           |           |         |           |             |                                |                                           |                       | F                      | UN100<br>R→                    |                      |
|-----------------------------|------------------------|--------------------|---------------------|-----------|-----------|---------|-----------|-------------|--------------------------------|-------------------------------------------|-----------------------|------------------------|--------------------------------|----------------------|
| Move control -              | −en†-                  | <sub>L</sub> 100E  | )P.R→<br>:          | Г         | END -     | – Move  | e to end  |             | Td : So                        | ource r                                   | egister               |                        | constant<br>stination<br>able  | U                    |
| ointer increment -          | -PAU-                  | L                  | :                   | -         | ERR -     | - Point | ter error |             |                                | ointer r                                  | U                     |                        |                                |                      |
| Pointer clear -             | - CLR -                | Pr                 | :                   |           |           |         |           |             |                                |                                           |                       | e with \<br>ddress     | /, Z, P0~<br>ing               | P9 inde              |
| Pointer clear -             |                        |                    | WM                  | WS        | TMR       | CTR     | HR        |             |                                |                                           |                       |                        |                                | P9 inde              |
| Range<br>Ope-               | WX<br>WX0              | WY<br>WY0          | WM<br>WMO           | WS<br>WS0 | <b>T0</b> | C0      | R0<br>    | IR<br>R3840 | OR<br>R3904                    | r as inc<br>SR<br>R3968                   | ROR<br>R5000          | ddress<br>DR<br>D0     | ing<br>K<br>16/32bit<br>+/-    | XR<br>V · Z          |
| Range<br>Ope-<br>rand       | WX<br>WX0              | WY<br>WY0          | WM<br>WMO           | WS<br>WS0 | <b>T0</b> | C0      | R0<br>    | IR<br>R3840 | OR<br>R3904                    | r as inc<br>SR<br>R3968                   | ROR<br>R5000          | ddress<br>DR           | K<br>16/32bit<br>+/-<br>number | XR                   |
| Range<br>Ope-<br>rand<br>Rs | WX<br>WX0              | WY<br>WY0<br>WY240 | WM<br>WM0<br>WM1896 | WS<br>WS0 | <b>T0</b> | C0      | R0<br>    | IR<br>R3840 | OR<br>R3904<br> <br>R3967<br>○ | r as inc<br>SR<br>R3968<br> <br>R4167<br> | ROR<br>R5000<br>R8071 | ddress DR D0 - D4095 0 | ing<br>K<br>16/32bit<br>+/-    | XR<br>V \ Z<br>P0~P9 |
| Range<br>Ope-<br>rand       | WX<br>WX0              | WY<br>WY0          | WM<br>WMO           | WS<br>WS0 | <b>T0</b> | C0      | R0<br>    | IR<br>R3840 | OR<br>R3904                    | r as inc<br>SR<br>R3968                   | ROR<br>R5000          | ddress<br>DR<br>D0     | K<br>16/32bit<br>+/-<br>number | XR<br>V · Z          |

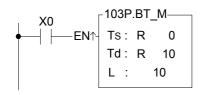

register Rs will be written onto the register Tdpr indicated by the pointer Pr within the destination table Td (length is L). Before executing, this instruction will first check the pointer clear "CLR" input signal. If "CLR" is 1, it will first clear the pointer Pr, and then carry out the move operation. After the move has been completed, it will then check the Pr value. If the Pr value has already reached L-1 (point to the last register in the table) then it will only set the move-to-end flag "END" to 1, and finish execution of this instruction. If the Pr value is less than L-1, then it must again check the pointer increment "INC" input signal. If "INC" is 1, then Pr value will be also increased. Besides, pointer clear "CLR" is able to operate independently, without being influenced by other input.

The effective range of the pointer is 0 to L-1. Beyond this range, the pointer error "ERR" will be set to 1, and this instruction will not be performed.

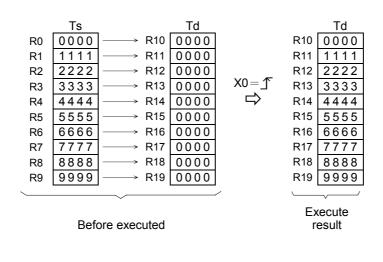



| FUN101<br>T→ |                           |         | TABLE TO REGISTER MOVE         Ladder symbol |                    |                   |                 |                 |                  |                     |                                     |                                           |                                            |                                     | F                                     | FUN101 D<br>T→R |
|--------------|---------------------------|---------|----------------------------------------------|--------------------|-------------------|-----------------|-----------------|------------------|---------------------|-------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------|---------------------------------------|-----------------|
|              | e control -<br>ncrement - |         | -101I<br>- Ts<br>- L                         | DP.T→<br>:<br>:    | R—                |                 |                 | re to end        |                     | L : L<br>Pr : P<br>Rd : D<br>Ts, Ro | ength o<br>ointer i<br>estinat<br>I may o | of source<br>register<br>ion reg<br>combin | ce table<br>r<br>lister<br>e with ' | register<br>e<br>V, Z, P0<br>lication | ~P9 to          |
| Poin         | nter clear –              | - CLR - |                                              |                    |                   |                 |                 |                  |                     |                                     |                                           |                                            |                                     |                                       |                 |
|              | Range                     | WX      | WY                                           | WM                 | WS                | TMR             | CTR             | HR               | IR                  | OR                                  | SR                                        | ROR                                        | DR                                  | K                                     | XR              |
|              | pe-                       | WX0<br> | WY0<br> <br>WY240                            | WM0<br> <br>WM1896 | WS0<br> <br>WS984 | T0<br> <br>T255 | C0<br> <br>C255 | R0<br> <br>R3839 | R3840<br> <br>R3903 |                                     | R3968<br> <br>R4167                       | R5000<br> <br>R8071                        | D0<br> <br>D4095                    | 16/32bit<br>+/-<br>number             | V \ Z<br>P0~P9  |
|              | Ts                        | 0       | 0                                            | 0                  | 0                 | $\bigcirc$      | $\bigcirc$      | 0                | 0                   | 0                                   | 0                                         | 0                                          | 0                                   |                                       | 0               |
|              | L                         |         |                                              |                    |                   |                 |                 | 0                |                     |                                     |                                           | 0*                                         | 0                                   |                                       | 0               |
|              | Pr                        |         | 0                                            | 0                  | 0                 | $\bigcirc$      | $\bigcirc$      | 0                |                     | 0                                   | 0*                                        | 0*                                         | 0                                   | 2~2048                                |                 |
|              | Rd                        |         | 0                                            | $\bigcirc$         | 0                 | 0               | $\bigcirc$      | 0                |                     | 0                                   | ○*                                        | 0*                                         | 0                                   |                                       |                 |

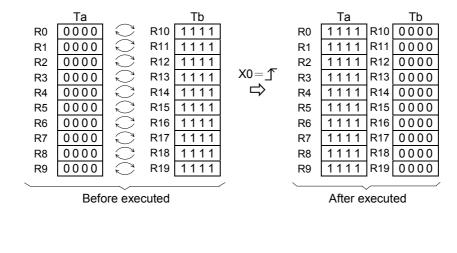
- When move control "EN" = 1 or "EN ↑" ( instruction) transition from 0 to 1, the value of the register Tspr specified by pointer Pr within source table Ts (length is L) will be written into the destination register Rd. Before executing, this instruction will first check the input signal of pointer clear "CLR". If "CLR" is 1, it will first clear Pr and then carry out the move operation. After completing the move operation, it will then check the value of Pr. If the Pr value has already reached L-1 (point to the last register in the table), then it sets the move-to-end flag to 1, and finishes executing of this instruction. If Pr is less than L-1, it check the status of "INC". If "INC" is 1, then it will increase Pr and finish the execution of this instruction. Besides, pointer clear "CLR" can execute independently and is not influenced by other inputs.
- The effective range of the pointer is 0 to L-1. Beyond this range the pointer error "ERR" will be set to 1 and this instruction will not be carried out.




|                                                | 02 <b>D P</b><br>→T                                                                                                                                     |                                                                                       |                                                                                     |                                                                                                           | TA                                                                                            | ABLE .                                                             | το τ                                                                    | ABLE                                                                                | Move                                                                 | Ē                                                                      |                                                                         |                                                                           |                                                                             | I                                                                 | FUN10<br>T                                                                           |                                                          |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|
| Pointer                                        | ove control -<br>r increment -<br>ointer clear -                                                                                                        | -PAU-                                                                                 | -1020<br>- Ts<br>- Td<br>- L<br>Pr                                                  | der sym<br>DP.T→ 7<br>:<br>:                                                                              | []<br>]                                                                                       | END—<br>ERR—                                                       |                                                                         |                                                                                     | To<br>L<br>Pr<br>Ts                                                  | d : Star<br>reç<br>: Tab<br>: Poir<br>s, Rd                            | rting nu<br>gister<br>Ile (Ts<br>nter reg<br>may c                      | umber<br>and To<br>gister<br>ombin                                        | of des<br>d) leng                                                           | tinatio<br>th<br>V, Z                                             | ble regis<br>n table<br>, P0~P                                                       |                                                          |
|                                                | Range                                                                                                                                                   | WX                                                                                    | WY                                                                                  | WM                                                                                                        | WS                                                                                            | TMR                                                                | CTR                                                                     | HR                                                                                  | IR                                                                   | OR                                                                     | SR                                                                      | ROR                                                                       | DR                                                                          | К                                                                 | XR                                                                                   |                                                          |
|                                                | Ope-<br>rand                                                                                                                                            | WX0<br> <br> <br>                                                                     | WY0<br> <br>WY240                                                                   | WM0<br> <br>WM1896                                                                                        | WS0<br> <br>WS984                                                                             | T0<br> <br>T255                                                    | C0<br> <br>C255                                                         | R0<br> <br> <br>                                                                    | R3840                                                                |                                                                        | R3968<br> <br>R4167                                                     | R5000                                                                     | D0<br> <br>D4095                                                            | 2<br> <br>2048                                                    | V ∖ Z<br>P0~P9                                                                       |                                                          |
|                                                | Ts                                                                                                                                                      | 0                                                                                     | 0                                                                                   | 0                                                                                                         | 0                                                                                             | $\bigcirc$                                                         | $\bigcirc$                                                              | $\bigcirc$                                                                          | 0                                                                    | $\bigcirc$                                                             | 0                                                                       | $\bigcirc$                                                                | 0                                                                           | 2040                                                              | 0                                                                                    |                                                          |
|                                                | Td                                                                                                                                                      |                                                                                       | 0                                                                                   | 0                                                                                                         | 0                                                                                             | 0                                                                  | 0                                                                       | 0                                                                                   |                                                                      | 0                                                                      | ○*                                                                      | *                                                                         | 00                                                                          | 0                                                                 | 0                                                                                    |                                                          |
|                                                | Pr                                                                                                                                                      |                                                                                       | 0                                                                                   | 0                                                                                                         | 0                                                                                             | 0                                                                  | 0                                                                       | 0                                                                                   |                                                                      | 0                                                                      | <b>O</b> *                                                              | 0*                                                                        | 0                                                                           | 0                                                                 |                                                                                      |                                                          |
| by<br>de<br>fir<br>w<br>ta<br>le<br>ex<br>● TI | Vhen move<br>y pointer Pl<br>estination t<br>rst clear Pr<br>rill then che<br>able), then<br>ess than L-<br>xecution. B<br>he effective<br>nd this inst | r within<br>able. E<br>to 0 a<br>ck the<br>it will s<br>1, it wi<br>esides<br>e range | the so<br>Before e<br>nd the<br>value<br>et the<br>ill chec<br>, pointe<br>e of the | ource table<br>execution<br>n do the<br>of pointer<br>move-to-<br>k the state<br>er clear "(<br>e pointer | e will be<br>n, it will<br>move (i<br>Pr. If ti<br>end flag<br>tus of "<br>CLR" ca<br>is 0 to | e move<br>first ch<br>in this<br>he Pr<br>"END<br>"INC".<br>n exec | ed to a<br>eck th<br>case 7<br>value f<br>" to 1<br>If "INC<br>cute inc | registe<br>e input<br>so $\rightarrow$ T<br>nas alr<br>and fir<br>c" is 1<br>depend | er Tdpr<br>t signa<br>d0). A<br>eady r<br>hish ex<br>then<br>dently, | r, which<br>I of po<br>fter the<br>eached<br>ecutin<br>the Pr<br>and w | h also<br>inter c<br>e move<br>d L-1 (<br>g of th<br>value<br>ill not t | pointe<br>lear "C<br>e actio<br>point t<br>is instr<br>will b<br>oe influ | d by th<br>CLR". If<br>n has I<br>o the la<br>ruction.<br>e incre<br>ienced | e poin<br>f "CLF<br>been<br>ast reg<br>. If the<br>ased<br>by oth | nter Pr in<br>R" is 1, i<br>complet<br>gister or<br>e Pr valu<br>by 1 be<br>her inpu | n the<br>t wil<br>ed i<br>n the<br>ue is<br>efore<br>it. |
|                                                |                                                                                                                                                         |                                                                                       |                                                                                     |                                                                                                           |                                                                                               |                                                                    |                                                                         |                                                                                     |                                                                      |                                                                        |                                                                         |                                                                           |                                                                             |                                                                   |                                                                                      |                                                          |

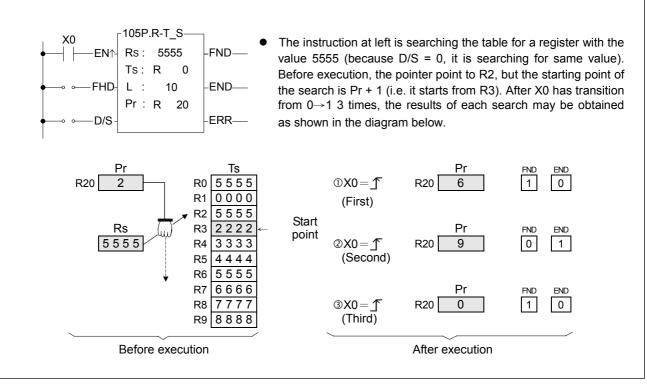



| FUN103<br>BT_I |                       |                         |                         |                          | В                       | LOC                    | K TA | BLE N | IOVE                      |   |         |                            |                        |                    |                      | 03 D P<br>T_M |
|----------------|-----------------------|-------------------------|-------------------------|--------------------------|-------------------------|------------------------|------|-------|---------------------------|---|---------|----------------------------|------------------------|--------------------|----------------------|---------------|
| Move           | control —E            | Г                       | 103DP                   | <u>r symbo</u><br>.BT_M- |                         |                        |      |       |                           |   |         | ce tabl<br>tinatior        |                        |                    |                      |               |
|                |                       |                         | Td:<br>L:               |                          |                         |                        |      | Ū     |                           |   |         |                            | n table<br>P9 to :     |                    | e indire             |               |
|                | Range<br>Ope-<br>rand | WX<br>WX0<br> <br>WX240 | WY<br>WY0<br> <br>WY240 | WM<br>WM0<br> <br>WM1896 | WS<br>WS0<br> <br>WS984 | TMR<br>T0<br> <br>T255 | C0   | R0    | IR<br>R3840<br> <br>R3903 |   |         | ROR<br>R5000<br> <br>R8071 | DR<br>D0<br> <br>D4095 | K<br>2<br> <br>256 | XR<br>V \ Z<br>P0~P9 |               |
|                | Ts<br>Td<br>L         | 0                       | 0                       | 0                        | 0                       | 0                      | 0    | 0     | 0                         | 0 | 0<br>0* | 0<br>0*<br>0*              |                        | 0                  | 0                    |               |
|                | this instruc          |                         |                         |                          |                         |                        |      |       |                           |   |         |                            |                        |                    |                      | n was         |


- When move control "EN" = 1 or "EN ↑ " ( P instruction) have a transition from 0 to 1, all the data from source table Ts (length L) is copied to the destination table Td, which is the same length.
- One table is completely copied every time this instruction is executed, so if the table length is long, it will be very time consuming. In practice, P modifier should be used to avoid time waste caused by each scan repeating the same movement action.

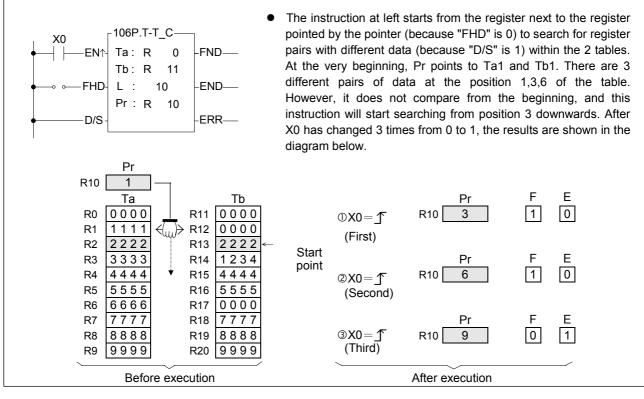


 The diagram at left below is the status before execution. When X0 from 0→1, the content of R0~R9 in Ts table will copy to R10~R19.




| T_SWP                                                          | P                                                                       |                                            |                                                       |                             | BLO     | СК ТА                               | BLE S                                  | SWAP                                                                                                                                                                       |                                          |                              |                   |         | Fl       | JN104 <b>D</b> P<br>T_SWP |
|----------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-----------------------------|---------|-------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------|-------------------|---------|----------|---------------------------|
| Move co                                                        | ntrol — EN                                                              | <sup>104]</sup>                            |                                                       |                             |         |                                     |                                        | Ta : Starting register of Table a<br>Tb : Starting register of Table b<br>L : Lengths of Table a and b<br>Ts, Rd may combine with V, Z, P0<br>indirect address application |                                          |                              |                   |         |          | ) serve                   |
| in the                                                         | Range<br>Ope-<br>rand<br>Ta<br>Tb<br>L<br>struction sw<br>table must    | WY0<br>WY240<br>O<br>Wy240<br>Wy240        |                                                       | o<br>o<br>nts of T          |         |                                     |                                        |                                                                                                                                                                            |                                          |                              |                   | -       |          | -                         |
| and Ta <ul> <li>This in <ul> <li>length</li> </ul> </li> </ul> | move conti<br>ible b will b<br>struction w<br>is big, it wil<br>X0<br>│ | e comp<br>/ill swaj<br>I be vei<br>_ 104P. | oletely sv<br>p all the<br>ry time c<br>.T_SWP<br>R 0 | vapped<br>registe<br>onsumi | ers spe | cified i<br>erefor F<br>● The<br>Wh | n L ea<br>' instruc<br>diagra<br>en X0 | ch time<br>ction sh<br>am at                                                                                                                                               | e the ir<br>nould b<br>left be<br>→1, th | nstructi<br>e used<br>low is | on is e<br>the st | execute | ed, so i |                           |




| FUN105<br>R-T_ |                       |            |                               |                                   | RE                | GIST            | ER T            | o tae                        | BLE SI              | EARC                | Н                                           |                                                              |                                                    |                         | FUN105<br>R-T_ |  |
|----------------|-----------------------|------------|-------------------------------|-----------------------------------|-------------------|-----------------|-----------------|------------------------------|---------------------|---------------------|---------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|-------------------------|----------------|--|
|                | rch contr<br>from hea | ad — Fł    | 10<br> √−− F<br> 10−− 1<br> F | adder s<br>05DP.R<br>₹s :<br>「s : | •                 | — F<br>— E      | ND—             | Found o<br>Search<br>Pointer | to end              | e                   | or<br>Ts:St<br>se<br>L:La<br>Pr:Po<br>Rs,Ts | a regi<br>tarting<br>earche<br>abel ler<br>ointer o<br>may c | ster<br>registe<br>d<br>ngth<br>of table<br>ombine | er of table             | Z, P0~P9       |  |
|                | Range                 | WX         | WY                            | WM                                | WS                | TMR             | CTR             | HR                           | IR                  | OR                  | SR                                          | ROR                                                          | DR                                                 | K                       | XR             |  |
| Op             | e-                    | WX0<br>    | WY0<br> <br>WY240             | WM0<br> <br>WM1896                | WS0<br> <br>WS984 | T0<br> <br>T255 | C0<br> <br>C255 | R0<br> <br>R3839             | R3840<br> <br>R3903 | R3904<br> <br>R3967 | R3968<br> <br>R4167                         |                                                              | D0<br> <br>D4095                                   | 16/32-bit<br>+/- number | V · Z<br>      |  |
|                | Rs                    | 0          | 0                             | 0                                 | 0                 | 0               | 0               | 0                            | 0                   | 0                   | 0                                           | 0                                                            | 0                                                  | 0                       | 0              |  |
|                | Ts                    | $\bigcirc$ | 0                             | 0                                 | 0                 | 0               | $\bigcirc$      | 0                            | 0                   | 0                   | 0                                           | 0                                                            | 0                                                  |                         | 0              |  |
|                | L                     |            |                               |                                   |                   |                 |                 | 0                            |                     |                     |                                             | <b>O*</b>                                                    | 0                                                  | 2~256                   |                |  |
|                | Pr                    |            | $\bigcirc$                    | 0                                 | $\bigcirc$        | 0               | $\bigcirc$      | $\bigcirc$                   |                     | 0                   | <b>*</b>                                    | 0*                                                           | $\bigcirc$                                         |                         |                |  |

- When search control "EN" = 1 or "EN ↑ " ( p instruction) has a transition from 0 to 1, will search from the first register of Table Ts (when "FHD" = 1 or Pr value has reached L-1), or from the next register (Tspr + 1) pointed by the pointer within the table ("FHD" = 0, while Pr value is less than L-1) to find the first data different with Rs(when D/S = 1) or find the first data the same with Rs (when D/S = 0). If it find a data match the condition it will immediately stop the search action, and the pointer Pr will point to that data and found objective flag "FND" will set to 1. When the searching has searched to the last register of the table, the execution of the instruction will stop, whether it was found or not. In that case the search-to-end flag "END" will be set to 1 and the Pr value will stop at L-1. When this instruction next time is executed, Pr will automatically return to the head of the table (Pr = 0) before the search begin.
- The effective range of Pr is 0 to L-1. If the value exceeds this range then the pointer error flag "ERR" will change to 1, and this instruction will not be carried out.



| FUN106 D P<br>T-T_C |             |            |                | TAB          | LE T       | Ο ΤΑ       | BLE (   | COMP       | ARE        |          |         |                     |        |            | 06 <b>D P</b><br>T_C |
|---------------------|-------------|------------|----------------|--------------|------------|------------|---------|------------|------------|----------|---------|---------------------|--------|------------|----------------------|
|                     |             | L          | <u>adder s</u> | <u>ymbol</u> |            |            |         |            |            |          |         |                     |        |            |                      |
| Compare co          | antrol E    |            | 06DP T         | T_C-         |            |            | Found   | obio otiv  |            |          | 0       | egister             |        |            |                      |
|                     | JILIOI — EI | ·          | b:             |              |            | ND—        | rouna   | objectiv   |            |          | 0       | egister<br>of Table |        | ole b      |                      |
| Compare from        | head — FH   | 1D-  L     | . :            |              | —Е         | ND—        | Compa   | re to er   | id F       | Pr : Po  | inter   |                     |        |            |                      |
|                     |             | F          | Pr:            |              |            |            |         |            |            |          |         |                     |        |            | )~P9 to              |
| Different/Same o    | ption — D/  | s –        |                |              | —Е         | RR—        | Pointer | error      | ę          | serve II | ndirect | addres              | ss app | lication   |                      |
| Rar                 | nge WX      | WY         | WM             | WS           | TMR        | CTR        | HR      | IR         | OR         | SR       | ROR     | DR                  | К      | XR         |                      |
|                     | WX0         | WY0        | WM0            | WS0          | Т0         | C0         | R0      | R3840      | R3904      | R3968    | R5000   | D0                  | 2      | V \ Z      |                      |
| Ope-<br>rand        | WX240       | WY240      | WM1896         | WS984        | T255       | C255       | R3839   | R3903      | R3967      | R4167    | R8071   | D4095               | 256    | P0~P9      |                      |
| Та                  | 0           | 0          | $\bigcirc$     | 0            | $\bigcirc$ | $\bigcirc$ | 0       | $\bigcirc$ | $\bigcirc$ | 0        | 0       | $\bigcirc$          |        | 0          |                      |
| Tb                  | 0           | $\bigcirc$ | $\bigcirc$     | $\bigcirc$   | $\bigcirc$ | $\bigcirc$ | 0       | $\bigcirc$ | $\bigcirc$ | 0        | 0       | $\bigcirc$          |        | $\bigcirc$ |                      |
| L                   |             |            |                |              |            |            | 0       |            |            |          | 0*      | 0                   | 0      |            |                      |
| Pr                  |             | 0          | $\bigcirc$     | 0            | 0          | 0          | 0       |            | 0          | ○*       | 0*      | 0                   |        |            |                      |

- When comparison control "EN" = 1 or "EN ↑ " ( is instruction) has a transition from 0 to 1, then starting from the first register in the tables Ta and Tb (when "FHD" = 1 or Pr value has reached L-1) or starting from the next pair of registers (Tapr+1 and Tbpr+1) pointed by Pr ("FHD" = 0, while Pr is less than L-1), this instruction will search for pairs of registers with different values (when "D/S" = 1) or the same value (when "D/S" = 0). When search found (either different or the same), it will immediately stop the search and the pointer Pr will point to the register pairs met the search criteria. The found flag "FND" will be set to 1. When it has searched to the last register of the table, the instruction will stop executing. whether it found or not. The compare-to-end flag "END" will be set to 1, and the pointer value will stop at L-1. When this instruction is executed next time, Pr will automatically return to the head of the table to begin the search.
- The effective range of Pr is 0 to L-1. The Pr value should not changed by other programs during the operation. As this will affect the result of the search. If the Pr value not in the effective range, the pointer error flag "ERR" will be set to 1, and this instruction will not be carried out.



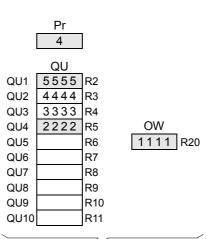
| FUN10<br>T_F |                                                       |                     |                                |                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TABL                                                                               | e fili                                                            | _                             |                                         |                                                                                                                                           |                                                                  |                                  |                                         | FUN10<br>T_F         |        |
|--------------|-------------------------------------------------------|---------------------|--------------------------------|--------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|-----------------------------------------|----------------------|--------|
| Fill cc      | ontrol—EN                                             | . [1                | 07DP.<br>s :<br>d :            | <u>symbol</u><br>T_FIL—  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br> <br>                                                                         | Td : Sta<br>∟ :Tal                                                | arting r<br>ble leng<br>may o | egiste<br>gth<br>combir                 | r of des                                                                                                                                  | stinatic                                                         | on table                         | 9                                       | register<br>erve ind | irect  |
|              | Range<br>Ope-<br>and<br>Ts<br>Td<br>L                 | WX0                 | WY<br>WY0<br>WY240<br>O        | WM<br>WM0<br>WM1896<br>O | WS<br>WS0<br>WS984<br>O<br>O      | TMR<br>T0<br> <br>T255<br>〇<br>〇                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CTR<br>C0<br>C255<br>O                                                             | HR<br>R0<br><br>R3839<br>O<br><br>-<br>-<br>-<br>-<br>-<br>-<br>- | IR<br>R3840<br> <br>R3903<br> |                                         |                                                                                                                                           | ROR<br>R5000<br> <br>R8071<br>                                   | DR<br>D0<br> <br>D4095<br>0<br>0 | K<br>16/32-bi<br>+/-<br>number<br>2~256 | • P0~P9              | -      |
| the<br>• Th  | nen fill co<br>e register:<br>is instruc<br>ould be u | s of the<br>tion is | e table<br>mainly<br>ith the l | Td.<br>v used fo         | r cleari<br>tion.<br>_FIL<br>5555 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    | (fill 0)<br>The i                                                 | or unif                       | fying th                                | ne tabl<br>left wi                                                                                                                        | e (fillin<br>II fill 5                                           | ng in th<br>555 in               | e same                                  | e values<br>whole ta | s). It |
|              |                                                       |                     | [                              | Rs<br>55555              | e execu                           | <sup>7</sup> R2<br>7 R3<br>→ R4<br>→ R5<br>→ R4<br>→ R5<br>→ R6<br>→ R6<br>→ R6<br>→ R7<br>→ R8<br>→ R9<br>→ R8<br>→ R9<br>→ R8<br>→ R9<br>→ R8<br>→ R9<br>→ R9<br>→ R9<br>→ R8<br>→ R9<br>→ R | Td<br>1547<br>2314<br>7725<br>0013<br>5247<br>1925<br>6744<br>5319<br>9788<br>2796 |                                                                   | (0=∫<br>⇔                     | א א א א א<br>א א א א א א<br>א א א א א א | 20     55       21     55       22     55       23     55       24     55       25     55       26     55       27     55       28     55 | d<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555 |                                  |                                         |                      |        |

| FUN108 D<br>T_SHF       |                                               |                                                                                            |                                                                                                                                                                                                                                                                                             |               | TABL                                                  | E SHI                                                                     | FT                                                                             |                                                                       |                                                                                                                                   |                                                                          |                                                                 |                                                                                                                                                              | FUN1(<br>T_S                                                                 | 08 <b>D P</b><br>SHF                                      |
|-------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|
| Left/Right dire         | ange WX<br>WX0<br>WX240<br>O                  | 108D<br>TS:<br>TS:<br>Td:<br>CW:<br>WY V<br>WY0 W<br>WY240 WM<br>○<br>○                    | er symbo           P.T_SF_           WM         WS           VM0         WS02           V1896         WS982           O         O           O         O           O         O           O         O           O         O           O         O           O         O           O         O | TMR<br>T0     | CTR<br>C0<br>C255<br>O<br>O                           | Ts :<br>Td :<br>L :<br>OW :<br>Ts, T<br>addro                             | consta<br>Sourc<br>Destir<br>Lengti<br>Regis<br>d may<br>ess ap<br>IR<br>R3840 | int or a<br>te table<br>nation t<br>hs of ta<br>ter to a              | regist<br>able s<br>ables T<br>accept<br>ne with<br>n<br>SR<br>R3968                                                              | er<br>toring s<br>s and<br>the shi<br>h V, Z,<br>ROR                     | shift re<br>Td<br>ifted ou<br>P0~PS                             |                                                                                                                                                              | ve indire<br>XR<br>V · Z                                                     |                                                           |
| created l<br>out will b | out and s<br>by the shif<br>e written ir<br>0 | t operation<br>t operation<br>to OW.<br>108P.T_S<br>IW : R<br>TS : R                       | e position<br>n will be fil<br>SHF                                                                                                                                                                                                                                                          | to the I      | eft (wh<br>IW and<br>IW II<br>II<br>T<br>it<br>o<br>s | hen "L/<br>d the r<br>h the<br>herefo<br>self (th<br>peratic<br>hift to r | R" = 1<br>esults<br>progra<br>re, the<br>le table<br>on (let 1<br>right op     | ) or to<br>will be<br>am at<br>e table<br>e must<br>X1 = 1<br>peratio | left, 1<br>shifts<br>be wri<br>, and 2<br>n (let 2                                                                                | ght (wi<br>n into t<br>s itself<br>it able)<br>X0 go t<br>X1 = 0         | hen "L<br>table T<br>and ti<br>. It firs<br>from 0-<br>, and n  | /R" = 0)                                                                                                                                                     | ). The r<br>data sh<br>same t<br>tes bao<br>m a shi<br>en perfo<br>(0 go fro | oom<br>ifted<br>able.<br>ck to<br>ft left<br>rm a<br>om 0 |
|                         | <                                             | left)      <br> | Ts(Td)<br>R0 0 0 0 0<br>R1 1 1 1 7<br>R2 2 2 2 2<br>R3 3 3 3 3<br>R4 4 4 4 4<br>R5 5 5 5 5<br>R6 6 6 6 6<br>R7 7 7 7 7<br>R8 8 8 8 8<br>R9 9 9 9 9<br>the path f<br>cution                                                                                                                  | $\frac{1}{2}$ | R11<br>(Shift<br>right                                | OW<br>×××<br>left)                                                        |                                                                                | R0<br>R1<br>R2<br>R3<br>R4<br>R5<br>R6<br>R7<br>R8<br>R9<br>R11       | (Shift<br>Td(T<br>1 2 3<br>0 0 0<br>1 1 1<br>2 2 2<br>3 3 3<br>4 4 4<br>5 5 5<br>6 6 6<br>7 7 7<br>8 8 8<br>OW<br>9999<br>st time | s)<br>4<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>7<br>8<br>7<br>9 | R0<br>R1<br>R2<br>R3<br>R4<br>R5<br>R6<br>R7<br>R8<br>R9<br>R11 | ift right)<br>Td(Ts)<br>0 0 0 0<br>1 1 1 1<br>2 2 2 2<br>3 3 3 3<br>4 4 4 4<br>5 5 5 5<br>6 6 6 6<br>7 7 7 7<br>8 8 8 8<br>1 2 3 4<br>OW<br>1234<br>econd ti | )<br> <br>2<br>3<br>3<br>4<br>5<br>7<br>7<br>3<br>4                          |                                                           |

| FUN109 D P<br>T_ROT                  |                                                     |                                                                                                                                                                |                                                                  | TA                               | ABLE                          | ROTA                                            | TE                                                                                                |                                                                              |                                                    |                                                    |                                                                                                                                                |                                                     |                     | 109 <b>D P</b><br>ROT                          |
|--------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|-------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------|------------------------------------------------|
| Rotate contro<br>Left/Right directio | ы—ем10<br>т                                         | adder syr<br>9DP.T_R<br>S :<br>d :                                                                                                                             |                                                                  |                                  |                               | Td:D<br>L:L<br>Ts,To                            | estina<br>engths<br>d may                                                                         | s of tab                                                                     | ble sto<br>ble<br>ne with                          | oring re                                           |                                                                                                                                                |                                                     | ion<br>rve indi     | rect                                           |
| Ran<br>Ope-<br>rand<br>Ts<br>Td<br>L | ge WX W<br>WX0 WY<br>   <br>WX240 WY2<br>0 0<br>0 0 | 0 WM0                                                                                                                                                          | WS<br>WS0<br>WS984                                               | TMR<br>T0<br> <br>T255<br>O<br>O | CTR<br>C0<br>C255<br>O        | HR<br>R0<br> <br>83839<br> <br> <br> <br>       |                                                                                                   |                                                                              |                                                    | ROR<br>R5000<br> <br>R8071<br>                     | DR<br>D0<br>-<br>D4095<br>O<br>O                                                                                                               | K<br>2<br>256                                       | XR<br>V · Z<br>0~P9 |                                                |
|                                      | rotated 1 posi<br>n will then be<br>X0<br>—         | ion to the<br>written on<br>-109P.T_F<br>Ts: R<br>Td: R                                                                                                        | left (wh<br>to table                                             | ien "L                           | (R" = 1<br>●  <br>t<br>t<br>f | )or 1 p<br>n the<br>able a<br>one lef<br>hen po | progra<br>fter ro<br>t rotat<br>erform                                                            | n to the<br>m at le<br>tation<br>ion (le<br>s one                            | e right<br>eft, Ts<br>will wr<br>t X1 =<br>right i | (when<br>and T<br>ite bac<br>1, an<br>rotatior     | "L/R"<br>Fd is th<br>ck to it<br>id X0<br>n (let 2                                                                                             | = 0). 1<br>he san<br>tself. If<br>go froi<br>X1 = ( |                     | ults of<br>e. The<br>erform<br>), and<br>X0 go |
|                                      | F<br>F<br>F<br>F<br>F<br>F                          | eft<br>Ts(Td)<br>0 0 0 0 0<br>1 1 1 1 1<br>2 2 2 2 2 2<br>3 3 3 3 3<br>4 4 4 4 2<br>5 5 5 5 5<br>6 6 6 6 6<br>7 7 7 7<br>8 8 8 8 8<br>9 9 9 9 9<br>5 ore execu | ) (right)<br>1<br>2<br>3<br>4<br>5<br>5<br>7<br>7<br>3<br>(left) |                                  |                               |                                                 | R0 99<br>R1 00<br>R2 1<br>R3 22<br>R4 33<br>R5 4<br>R5 4<br>R5 4<br>R5 4<br>R7 60<br>R8 7<br>R9 8 | d(Ts)<br>9999<br>000<br>111<br>222<br>233<br>333<br>444<br>555<br>666<br>777 |                                                    | R1<br>R2<br>R3<br>R4<br>R5<br>R6<br>R7<br>R8<br>R9 | e right<br><u>Td(Ts</u><br>0 0 0 0<br>1 1 1 1<br>2 2 2 2<br>3 3 3 3<br>4 4 4 4<br>5 5 5 5<br>6 6 6 0<br>7 7 7<br>8 8 8 8<br>9 9 9 9<br>cond ti | )<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 |                     |                                                |

| FUN11<br>QUE           |                                                                                   |                                                                                  |                                                                                                        |                                             |                                                 |                                                       | QL                                                                   | JEUE                                          |                               |                     |                         |                  |                             |                                          | FUN110<br>QUEU                                 |
|------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|-------------------------------|---------------------|-------------------------|------------------|-----------------------------|------------------------------------------|------------------------------------------------|
|                        |                                                                                   |                                                                                  | Ladde                                                                                                  | r symbo                                     | <u>ol</u>                                       |                                                       |                                                                      |                                               |                               | IW :                |                         |                  |                             | queue, ca                                | n be a cons                                    |
|                        |                                                                                   | г                                                                                | 110DP                                                                                                  | QUEU                                        | E                                               |                                                       |                                                                      |                                               |                               |                     | or a r                  | -                |                             |                                          |                                                |
| xecutior               | n control – E                                                                     |                                                                                  | IW :                                                                                                   |                                             |                                                 | PT—                                                   | Queue                                                                | e empty                                       | ,                             |                     |                         |                  |                             | fqueue                                   |                                                |
|                        |                                                                                   |                                                                                  | QU :                                                                                                   |                                             |                                                 |                                                       |                                                                      |                                               |                               | L :                 | Size o                  | f queu           | ie                          |                                          |                                                |
| In/Ou                  | ıt control –                                                                      |                                                                                  |                                                                                                        |                                             | E - F                                           | UL—                                                   | Queu                                                                 | 9                                             |                               | Pr :                | Pointe                  | r regis          | ster                        |                                          |                                                |
|                        |                                                                                   |                                                                                  | Pr :                                                                                                   |                                             |                                                 |                                                       |                                                                      |                                               |                               |                     | Regist<br>from o        |                  |                             | g data pop                               | ped out                                        |
|                        |                                                                                   | · · ·                                                                            | OW :                                                                                                   |                                             | ⊫ ⊢e                                            | RR—                                                   | Pointe                                                               | er error                                      |                               |                     | -                       |                  |                             |                                          | 9 to serve                                     |
| 7                      |                                                                                   |                                                                                  |                                                                                                        |                                             |                                                 | TMD                                                   |                                                                      |                                               |                               |                     | ct add                  |                  |                             |                                          | VD                                             |
|                        | Range                                                                             | WX<br>WX0                                                                        | WY<br>WY0                                                                                              | WM<br>WM0                                   | WS<br>WS0                                       | TMR<br>T0                                             | CTR<br>C0                                                            | HR<br>R0                                      | IR<br>R3840                   | OR<br><b>P</b> 3004 | SR<br>R3968             | ROR              | DR<br>D0                    | К                                        | XR<br>V · Z                                    |
|                        | Ope-                                                                              |                                                                                  |                                                                                                        |                                             |                                                 |                                                       |                                                                      | 1                                             |                               |                     |                         |                  |                             | 16/32-bit<br>+/- number                  |                                                |
|                        | rand                                                                              | -                                                                                | -                                                                                                      | WM1896                                      |                                                 |                                                       |                                                                      |                                               |                               |                     | R4167                   | -                | -                           |                                          | P0~P9                                          |
|                        | IW<br>QU                                                                          | 0                                                                                | 0                                                                                                      | 0                                           | 0                                               | 0                                                     | 0                                                                    | 0                                             | 0                             | 0                   | 0                       | 0<br>0*          | 0                           | 0                                        | 0                                              |
|                        | L                                                                                 |                                                                                  |                                                                                                        |                                             |                                                 | 0                                                     | 0                                                                    | 0                                             |                               | 0                   |                         | *                | Õ                           | 2~256                                    |                                                |
|                        | Pr                                                                                |                                                                                  | 0                                                                                                      | 0                                           | 0                                               | 0                                                     | 0                                                                    | 0                                             |                               | 0                   | O*                      | <b>O*</b>        | 0                           |                                          |                                                |
| l                      | WO                                                                                |                                                                                  | 0                                                                                                      | $\bigcirc$                                  | $\bigcirc$                                      | 0                                                     | $\bigcirc$                                                           | 0                                             |                               | 0                   | ○*                      | ()*              | 0                           |                                          |                                                |
| an<br>us∉<br>● Qu      | id not from<br>ed to show<br>ueue is a fi                                         | 0 to L<br>that th<br>rst in fi                                                   | -1. In o<br>ne queo<br>irst out                                                                        | other wo<br>ue is em<br>(FIFO)              | ords QL<br>pty.<br>device,                      | J₁~QU<br>, i.e                                        | l <sub>∟</sub> resp<br>the d                                         | oective<br>ata tha                            | ely cor<br>at first           | respo<br>t push     | nd to ped into          | oointe           | rs Pr =<br>qu <u>e</u> ue   | = 1 to L, a                              | o from 1 to<br>and Pr = 0 i<br>e first to po   |
| an<br>us<br>• Qu<br>ou | id not from<br>ed to show<br>ueue is a fi                                         | 0 to L<br>that th<br>rst in fi<br>queue                                          | -1. In o<br>ne quei<br>irst out<br>. A que                                                             | other wo<br>ue is em<br>(FIFO)<br>eue is co | rds QL<br>pty.<br>device,<br>omprise            | J₁~QU<br>, i.e<br>ed of L                             | l <sub>∟</sub> resp<br>the d                                         | oective<br>ata tha                            | ely cor<br>at first           | respo<br>t push     | nd to ped into          | oointe           | rs Pr =<br>qu <u>e</u> ue   | = 1 to L, a                              | and Pr = 0 i                                   |
| an<br>us<br>• Qu<br>ou | Id not from<br>Id to show<br>Id to show<br>Id to show<br>It from the<br>Id regist | 0 to L<br>that th<br>rst in fi<br>queue.<br>ter, as                              | -1. In o<br>ne quei<br>irst out<br>. A que                                                             | other wo<br>ue is em<br>(FIFO)<br>eue is co | rds QL<br>pty.<br>device,<br>omprise            | J₁~QU<br>, i.e<br>ed of L                             | l∟ resp<br>the d<br>. cons                                           | ective<br>ata tha<br>ecutiv<br><u>Pr</u><br>4 | ely cor<br>at first           | respo<br>t push     | nd to ped into          | oointe           | rs Pr =<br>qu <u>e</u> ue   | = 1 to L, a                              | and Pr = 0 i<br>e first to po                  |
| an<br>us<br>• Qu<br>ou | id not from<br>ed to show<br>leue is a fi<br>it from the<br>e QU regist           | 0 to L<br>that th<br>rst in fi<br>queue.<br>ter, as                              | -1. In one queet                                                                                       | (FIFO)<br>eue is em<br>diagram              | rds QL<br>pty.<br>device,<br>omprise            | , i.e<br>d of L<br>QU1<br>QU2<br>QU3                  | U <sub>L</sub> resp<br>the d<br>cons<br>                             | Pr<br>4<br>QU<br>2<br>do                      | ely cor<br>at first           | respo<br>t push     | nd to ped into          | oointe           | rs Pr =<br>qu <u>e</u> ue   | = 1 to L, a                              | and Pr = 0 i<br>e first to po<br>starting fror |
| an<br>us<br>• Qu<br>ou | Id not from<br>Id to show<br>Id to show<br>Id to show<br>It from the<br>Id regist | 0 to L<br>that th<br>rst in fi<br>queue.<br>ter, as                              | -1. In one queet                                                                                       | other wo<br>ue is em<br>(FIFO)<br>eue is co | ords QL<br>pty.<br>device,<br>omprise<br>below: | , i.e<br>d of L<br>QU1<br>QU2<br>QU3                  | J <sub>L</sub> resp<br>the d<br>. cons<br><u>@444</u><br><u>③333</u> | Pr<br>4<br>QU<br>2<br>do                      | ely cor<br>at first<br>e 16 c | t push<br>or 32 b   | nd to ped into          | oointe           | rs Pr =<br>qu <u>e</u> ue   | = 1 to L, a                              | and Pr = 0 i<br>e first to po<br>starting fror |
| an<br>us<br>• Qu<br>ou | Id not from<br>Id to show<br>Id to show<br>Id to show<br>It from the<br>Id regist | 0 to L<br>that th<br>rst in fi<br>queue.<br>ter, as                              | -1. In one queet                                                                                       | (FIFO)<br>eue is em<br>diagram              | ords QL<br>pty.<br>device,<br>omprise<br>below: | , i.e<br>d of L<br>d of L<br>QU1<br>QU2<br>QU3<br>QU4 | U <sub>L</sub> resp<br>the d<br>cons<br>                             | Pr<br>4<br>QU<br>2<br>do                      | ely cor<br>at first<br>e 16 c | Prespo              | nd to ped into pit regi | o the c<br>sters | rs Pr =<br>queue<br>( ∎ ins | = 1 to L, a<br>will be the<br>struction) | and Pr = 0 i<br>e first to po<br>starting fror |
| an<br>us<br>• Qu<br>ou | Id not from<br>Id to show<br>Id to show<br>Id to show<br>It from the<br>Id regist | 0 to L<br>that th<br>rst in fi<br>queue<br>ter, as<br>1.IW<br>QU1<br>2.Pr<br>the | -1. In contrast out<br>inst out<br>A que<br>in the contrast out<br>push<br>alway<br>$+1 \rightarrow F$ | (FIFO)<br>eue is em<br>diagram              | rds QL<br>pty.<br>device,<br>omprise<br>below:  | , i.e<br>ed of L<br>QU1<br>QU2<br>QU3<br>QU4<br>QU5   | U <sub>L</sub> resp<br>the d<br>cons<br>                             | Pr<br>4<br>QU<br>2<br>do                      | ely cor<br>at first<br>e 16 c | Prespo              | nd to ped into pit regi | o the o<br>sters | rs Pr =<br>queue<br>( ∎ ins | = 1 to L, a<br>will be the<br>struction) | and Pr = 0 i<br>e first to po<br>starting fror |

remained in the queue.

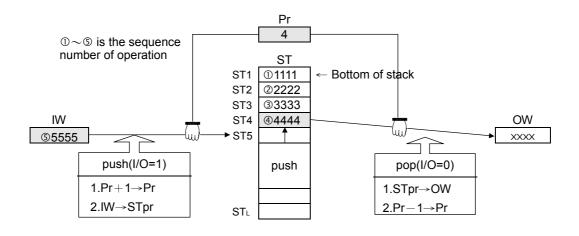

| FUN110 D P<br>QUEUE | QUEUE | FUN110 D P<br>QUEUE |  |
|---------------------|-------|---------------------|--|
|---------------------|-------|---------------------|--|

If no data has yet been pushed into the queue or the pushed in data has already been popped out (Pr = 0), then the queue empty flag will be set to 1. In this case, even if there is further popping out action, this instruction will not be executed. If data is only pushed in and not popped out, or pushed in is more than that popped out, then the queue finally becomes full (pointer Pr indicates the QU<sub>L</sub> position), and the queue full flag is changed to 1. In this case, if there is more pushing in action, this instruction will not execute. The pointer for this instruction is used during access of the queue, to indicate the data that was pushed in the earliest. Other programs should not be allowed to change it, or else an operation error will be created. If there is a specific application, which requires the setting of a Pr value, then its permissible range is 0 to L (0 means empty, and 1 to L respectively correspond to QU1 to QUL). Beyond this range, the pointer error flag "ERR" will be set as 1, and this instruction will not be carried out.

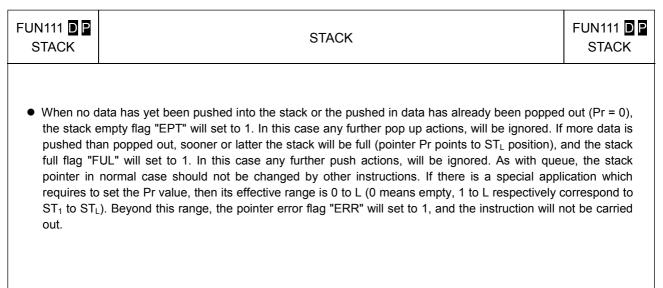
| X0        | -110P.0 | QUE | UE- |        |
|-----------|---------|-----|-----|--------|
|           | IW :    | R   | 0   | -EPT — |
| X1        | QU :    |     |     |        |
| ↓   I/O - | L :     |     | 10  | -FUL — |
|           | Pr :    | R   | 1   |        |
|           | OW :    | R   | 20  | -ERR—  |

• The program at left assumes the queue content is the same with the queue at preceding page. It will first perform queue push operation , and then perform pop out action. The results are shown below. Under any circumstance, Pr always point to the first (oldest) data that was remained in queue.

|      | Pr   |     |              |
|------|------|-----|--------------|
|      | 5    |     |              |
|      | QU   |     |              |
| QU1  | 5555 | R2  |              |
| QU2  | 4444 | R3  |              |
| QU3  | 3333 | R4  |              |
| QU4  | 2222 | R5  | WO           |
| QU5  | 1111 | R6  | xxxx R20     |
| QU6  |      | R7  | $\uparrow$   |
| QU7  |      | R8  | OW unchanged |
| QU8  |      | R9  |              |
| QU9  |      | R10 |              |
| QU10 |      | R11 |              |



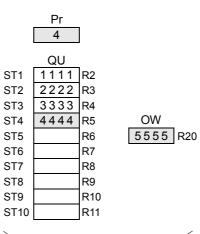

After push in (X1=1 , X0 from  $0 \rightarrow 1$ )


After pop off (X1=0  $\cdot$  X0 from 0 $\rightarrow$ 1)

| FUN111 D P<br>STACK                                                                                                                                                                                                                                                                                         |            |                   |                                  |            |            | ST              | ACK              |       |            |                     |                     |                  | F                          | UN111<br>STACH |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|----------------------------------|------------|------------|-----------------|------------------|-------|------------|---------------------|---------------------|------------------|----------------------------|----------------|
| Ladder symbol       IW : Data pushed into stack, can b or a register         Execution control - EN^-       IW : Important - EPT- Stack empty         In/Out control - I/O       IW : Important - EPT- Stack full         Pr : Pointer register       OW : EREM         OW : EREM       -ERR- Pointer error |            |                   |                                  |            |            |                 |                  |       |            |                     |                     |                  | ck<br>a poppe              | d out fror     |
| Banga                                                                                                                                                                                                                                                                                                       | WX         | WY                | WM                               | WS         | TMR        | CTR             | HR               | IR    | OR         | SR                  | ROR                 | DR               | K                          | XR             |
| Range<br>Ope-<br>rand                                                                                                                                                                                                                                                                                       | WX0        | WY0<br> <br>WY240 | WM0<br> <br> <br> <br> <br> <br> | WS0        | <b>T0</b>  | C0<br> <br>C255 | R0<br> <br>R3839 | R3840 | R3904      | R3968<br> <br>R4167 | R5000<br> <br>R8071 | D0<br> <br>D4095 | 16/32-bit<br>+/-<br>number | V · Z          |
| IW                                                                                                                                                                                                                                                                                                          | $\bigcirc$ | $\bigcirc$        | 0                                | $\bigcirc$ | 0          | 0               | 0                | 0     | $\bigcirc$ | 0                   | 0                   | $\bigcirc$       | 0                          |                |
| ST                                                                                                                                                                                                                                                                                                          |            | 0                 | 0                                | 0          | $\bigcirc$ | 0               | 0                |       | 0          | <b>O*</b>           | <b>O*</b>           | 0                |                            | $\bigcirc$     |
| L                                                                                                                                                                                                                                                                                                           |            |                   |                                  |            |            |                 | 0                |       |            |                     | 0*                  | 0                | 2~256                      |                |
|                                                                                                                                                                                                                                                                                                             |            | $\cap$            | 0                                | $\bigcirc$ | $\bigcirc$ | 0               | 0                |       | 0          | ○*                  | ○*                  | 0                |                            |                |
| Pr<br>OW                                                                                                                                                                                                                                                                                                    |            | 0                 | 0                                | $\cup$     | 0          | -               | $\cap$           |       |            | *                   | *                   |                  |                            |                |

- Like queue, stack is also a kind of table. The nature of its pointer is exactly the same as with queue, i.e. Pr = 1 to L, which corresponds to ST<sub>1</sub> to ST<sub>L</sub>, and when Pr = 0 the stack is empty.
- Stack is the opposite of queue, being a last in first out (LIFO) device. This means that the data that was most recently pushed into the stack will be the first to be popped out of the stack. The stack is comprised of L consecutive 16 or 32-bit ( D instruction) registers starting from ST, as shown in the following diagram:




• When execution control "EN" = 1 or "EN ↑" ( instruction) has a transition from 0 to 1, the status of in/out control "I/O" determines whether the IW data will be pushed into the stack (when "I/O" = 1), or the data pointed by Pr within the stack (the data most recently pushed into the stack) will be moved out and transferred to OW (when "I/O" = 0). Note that the data pushed in is stacking, so before pushed in, Pr will increased by 1 to point to the top of the stack then the data will be pushed in. When it is popped out, the data pointed by pointer Pr (the most recently pushed in data) will be transferred to OW. After then Pr will decreased by 1. Under any circumstances, the pointer Pr will always point to the data that was pushed into the stack most recently.



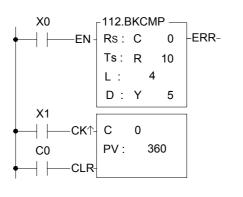
|       | -111P.       |   |    |        |
|-------|--------------|---|----|--------|
| +EN↑- | IW :<br>ST : | R | 0  | -EPT — |
| X1    | ST :         | R | 2  |        |
|       | L :          |   | 10 | -FUL — |
|       | Pr:          | R | 1  |        |
|       | OW :         | R | 20 | -ERR—  |

The program at left assumes that the initial content of the stack is just as in the diagram of a stack on the preceding page. The operation illustrated in this example is to push a data and than pop it from stack. The results are shown below. Under any circumstances, Pr always point to the data that was most recently pushed into the stack.

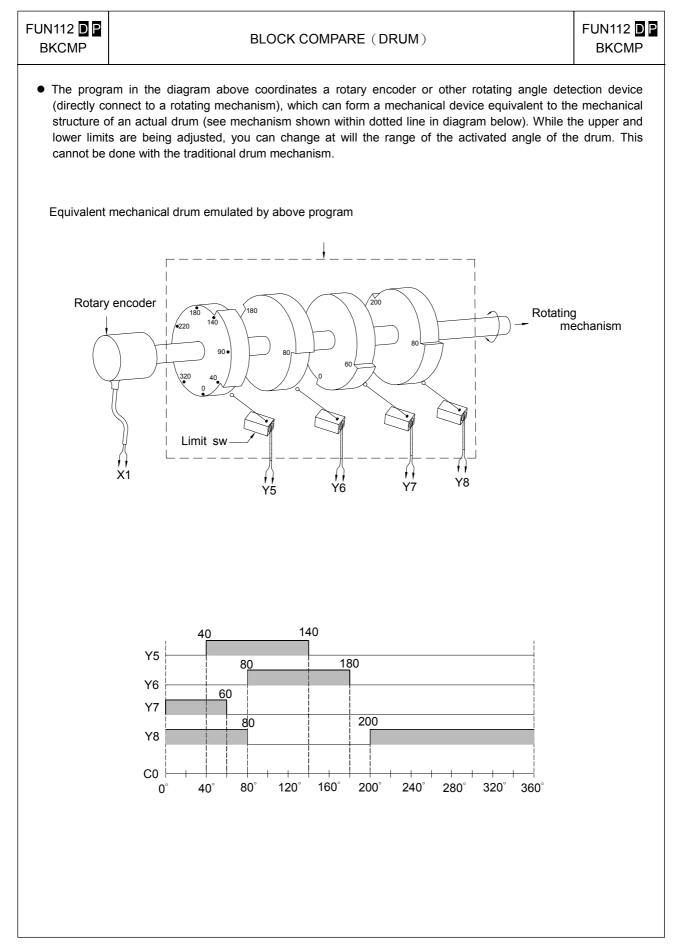
|      | Pr   |     |              |
|------|------|-----|--------------|
|      | 5    | R1  |              |
|      | от   | -   |              |
|      | ST   | 1   |              |
| ST1  | 1111 | R2  |              |
| ST2  | 2222 | R3  |              |
| ST3  | 3333 | R4  |              |
| ST4  | 4444 | R5  | OW           |
| ST5  | 5555 | R6  | XXXX R20     |
| ST6  |      | R7  | $\uparrow$   |
| ST7  |      | R8  | OW unchanged |
| ST8  |      | R9  |              |
| ST9  |      | R10 |              |
| ST10 |      | R11 |              |
|      |      |     |              |

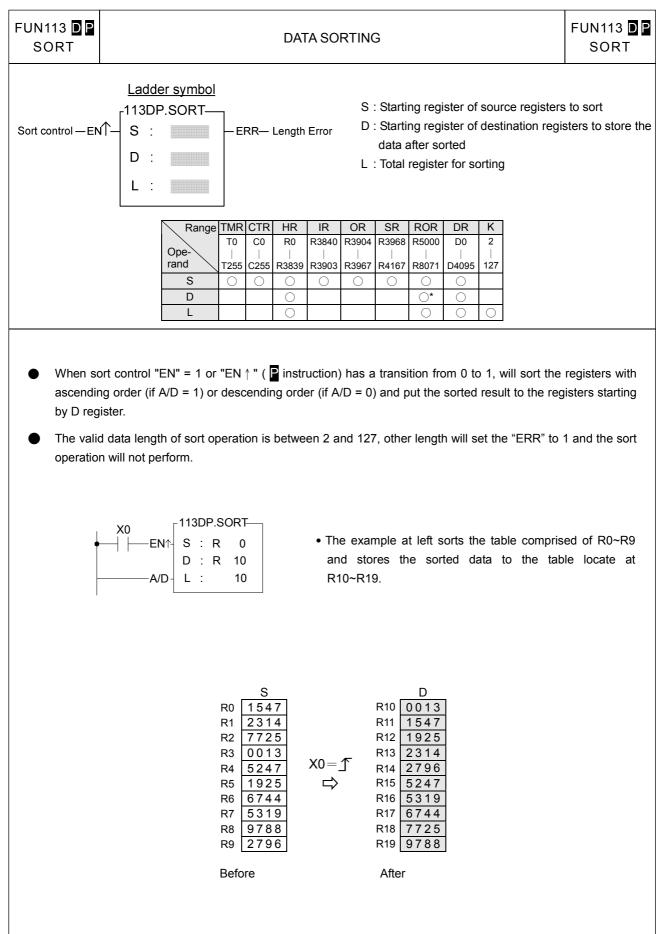


After pop up(X1=0 , X0 from  $0 \rightarrow 1$ )


After push(X1=1 , X0 from  $0 \rightarrow 1$ )

| FUN112 D<br>BKCMP | 2               |                 |                 |                        | E                 | BLOCK              | COMF              | PARE            | (DR             | RUM)             |                    |          |         |                     |                  | N112 D                     |
|-------------------|-----------------|-----------------|-----------------|------------------------|-------------------|--------------------|-------------------|-----------------|-----------------|------------------|--------------------|----------|---------|---------------------|------------------|----------------------------|
|                   |                 |                 |                 | <u>dder s</u><br>2DP.B |                   |                    |                   |                 |                 |                  | Data fo<br>registe |          | pare, o | can be              | a cons           | tant or a                  |
| Comparison co     | ntrol-          | - EN -          | – Rs<br>Ts      | s :<br>s :             |                   | -ERF               | R — Limi          | t error         |                 |                  | Startin<br>ower li | 0 0      | ter blo | ock sto             | ring up          | per and                    |
|                   |                 |                 | L               | :                      |                   |                    |                   |                 |                 | L :I             | Numbe              | er of pa | airs of | upper               | and lov          | ver limits                 |
|                   |                 |                 | D               | :                      |                   |                    |                   |                 |                 |                  | Starting           |          | storin  | g resul             | ts of            |                            |
| Range             | Υ               | М               | S               | WX                     | WY                | WM                 | WS                | TMR             | CTR             | HR               | IR                 | OR       | SR      | ROR                 | DR               | K                          |
| Ope-              | Y0<br> <br>Y255 | M0<br> <br>M999 | S0<br> <br>S999 | WX0<br> <br>WX240      | WY0<br> <br>WY240 | WM0<br> <br>WM1896 | WS0<br> <br>WS984 | T0<br> <br>T255 | C0<br> <br>C255 | R0<br> <br>R3839 |                    |          |         | R5000<br> <br>R8071 | D0<br> <br>D4095 | 16/32-bit<br>+/-<br>number |
| Rs                |                 |                 |                 | 0                      | 0                 | 0                  | 0                 | 0               | 0               | 0                | 0                  | 0        | 0       | 0                   | 0                | 0                          |
| Ts                |                 |                 |                 | 0                      | 0                 | 0                  | 0                 | $\bigcirc$      | 0               | 0                | $\bigcirc$         | 0        | 0       | 0                   | 0                |                            |
| L                 |                 |                 |                 |                        |                   |                    |                   |                 |                 | 0                |                    |          |         | 0*                  | 0                | 1~256                      |
| D                 | $\bigcirc$      | $\circ$         | 0               |                        |                   |                    |                   |                 |                 |                  |                    |          |         |                     |                  |                            |


- When comparison control "EN" = 1 or "EN ↑ " ( is instruction) has a transition from 0 to 1, comparisons will be perform one by one between the contents of Rs and the upper and lower limits form by L pairs of 16 or 32-bit ( is modifier) registers starting from the Ts register (starting from T0 each adjoining 2 register units form a pair of upper and lower limits). If the value of Rs falls within the range of the pair, then the bit within the comparison results relay D which corresponds to that pair will be set to 1. Otherwise it will be set as 0 until comparison of all the L pairs of upper and lower limits is completed.
- When M1975=0, if there is any pair where the upper limit value is less than the lower limit value, then the limit error flag "ERR" will be set to 1, and the comparison output for that pair will be 0.
- When M1975=1, there is no restriction on the relation of upper limit and lower limit, this can apply for 360° rotary electronic drum switch application.


|     | Upper limit     | Lower limit        | Compare               | Compared |                   | Result         |
|-----|-----------------|--------------------|-----------------------|----------|-------------------|----------------|
| 0   | T <sub>S1</sub> | $T_{S0}$           | $\longleftrightarrow$ | value    | $\longrightarrow$ | D <sub>0</sub> |
| 1   | T <sub>S3</sub> | T <sub>S2</sub>    | $\longleftrightarrow$ |          | $\longrightarrow$ | D <sub>1</sub> |
| ζ   | 2               | 2                  | 2                     | Rs       | 2                 | 2              |
| L–1 | $T_{S2L-1}$     | T <sub>S2L-2</sub> | $\longleftrightarrow$ |          | $\longrightarrow$ | $D_{L-1}$      |

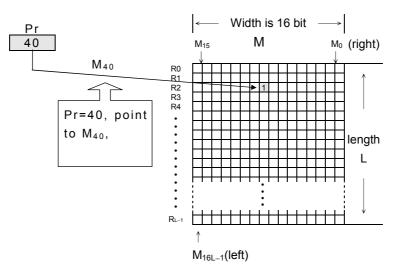
• Actually this instruction is a drum switch, which can be used in interrupt program and when incorporate with immediate I/O instruction (IMDIO) can achieve an accurate electronic drum.



- In this program, C0 represents the rotation angle (Rs) of a drum shaft. The block compare instruction performs a comparison between Rs and the 4 pairs (L = 4) of upper and lower limits, R10,R11, R12,R13, R14,R15 and R16,R17. The comparison results can be obtained from the four drum output points Y5 to Y8.
- The input point X1 is a rotation angle detector mounted on the drum shaft. With each one degree rotation of the drum shaft angle, X1 produces a pulse. When the drum shaft rotates a full cycle, X1 produces 360 pulses.

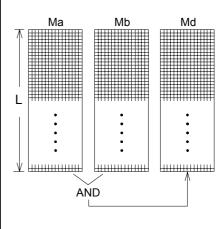


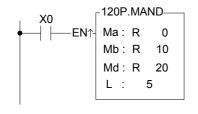



| FUN114 P<br>Z-WR                                                |                |        |                   |                       |                      |         | ZO     | NE W    | RITE        |                       |                  |                   |                                          |               |       | N114 <mark>P</mark><br>2-WR |
|-----------------------------------------------------------------|----------------|--------|-------------------|-----------------------|----------------------|---------|--------|---------|-------------|-----------------------|------------------|-------------------|------------------------------------------|---------------|-------|-----------------------------|
| Operation contr<br>Write Selectio                               |                |        | -11<br>- D<br>- N |                       | <u>symbo</u><br>WR — |         | R—     | Ν       | :Quan<br>No | tity of to<br>perance | oeing s<br>I can | et oe re<br>combi | set or r<br>eset, 1-<br>ne V<br>peration | ~511<br>、Z 、F | P0~P9 | for index                   |
|                                                                 | Y              | М      | S                 | WY                    | WM                   | WS      | TMR    | CTR     | HR          | IR                    | OR               | SR                | ROR                                      | DR            | К     | XR                          |
| Range -                                                         | Y0             | MO     | S0                | WY0                   | WM0                  | WS0     | T0     | CO      | R0          | R3840                 | R3904            | R3968             | R5000                                    | D0            |       | V · Z                       |
|                                                                 | <br>Y255       | M1911  | <br>S99           | WY240                 | WM1896               | WS984   | T255   | C255    | R3839       | R3903                 | R3967            | R4167             | R8071                                    | D4095         |       | P0~P9                       |
| DN                                                              | 0              | 0      | 0                 | 0                     | 0                    | 0       | 0      | 0       | 0           | 0                     | 0                | 0                 | 0                                        | 0             | 1-511 | 0                           |
|                                                                 |                |        |                   |                       |                      |         | l      |         | $\cup$      |                       |                  |                   | 0                                        | $\cup$        | 1011  |                             |
| ● When o<br>operatio<br>to 0 ("1/0<br>×0<br>← ← ← EN<br>← − 1/0 | n acc<br>0"=0) | cordin | ig to<br>et to    | the in<br>1("1/0<br>0 | put stat             | us of w |        | _       |             |                       |                  |                   |                                          |               |       |                             |
| • Above exam<br>• X0<br>•                                       | N - []         | 14.Z-V |                   | 15 -                  | 9 will be            | e reset | to 0 v | while X | 0=1.        |                       |                  |                   |                                          |               |       |                             |

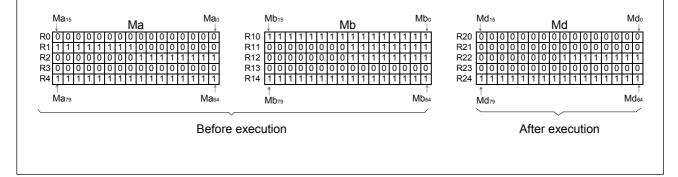
• Above example, bits M5~M11 will be reset to 0 while X0=1.

| Fun No. | Mnemonic | Functionality  | Fun No. | Mnemonic | Functionality     |
|---------|----------|----------------|---------|----------|-------------------|
| 120     | MAND     | Matrix AND     | 126     | MBRD     | Matrix Bit Read   |
| 121     | MOR      | Matrix OR      | 127     | MBWR     | Matrix Bit Write  |
| 122     | MXOR     | Matrix XOR     | 128     | MBSHF    | Matrix Bit Shift  |
| 123     | MXNR     | Matrix XNOR    | 129     | MBROT    | Matrix Bit Rotate |
| 124     | MINV     | Matrix Inverse | 130     | MBCNT    | Matrix Bit Count  |
| 125     | MCMP     | Matrix Compare |         |          |                   |


# Matrix Instructions


- A matrix is comprised of 2 or more consecutive 16-bit registers. The number of registers comprising the matrix is called the matrix length (L). One matrix altogether has Lx16 bits (points), and the basic unit of the object for each operation is bit.
- The matrix instructions treats the 16×L matrix bits as a set of series points( denoted by M<sub>0</sub> to M<sub>16L-1</sub>). Whether the matrix is formed by register or not, the operation object is the bit not numerical value.
- Matrix instructions are used mostly for discrete status processing such as moving, copying, comparing, searching, etc, of single point to multipoint (matrix), or multipoint-to-multipoint. These instructions are convenient, important for application.
- Among the matrix instructions, most instruction need to use a 16-bit register as a pointer to points a specific point within the matrix. This register is known as the matrix pointer (Pr). Its effective range is 0 to 16L-1, which corresponds respectively to the bits M<sub>0</sub> to M<sub>16L-1</sub> within the matrix.
- Among the matrix operations, there are shift left/right, rotate left/right operations. We define the movement toward higher bit is left direction, while the movement toward lower bit is right direction, as shown in the diagram below.




| FUN120 P<br>MAND |          |            |         |            | M    | ATRI       | X ANI      | C       |        |          |         |            |            |            | 120 P<br>AND |
|------------------|----------|------------|---------|------------|------|------------|------------|---------|--------|----------|---------|------------|------------|------------|--------------|
|                  |          | Ladd       | er symt | <u>ool</u> |      |            |            |         |        |          |         |            |            |            |              |
|                  |          | -120P      | MAND    |            |      |            | Ma: S      | tarting | regist | er of s  | ource   | matrix     | a          |            |              |
| Operation contro | ol —EN↑— | Ma :       |         |            |      |            | Mb: S      | tarting | regist | er of s  | ource   | matrix     | b          |            |              |
|                  |          | Mb :       |         |            |      |            | Md : S     | tarting | regist | ter of c | destina | ation m    | natrix     |            |              |
|                  |          | Md :       |         |            |      |            | L :Le      | ength   | of mat | rix (Ma  | a, Mb a | and Mo     | d)         |            |              |
|                  |          | L :        |         |            |      |            |            |         | -      |          |         | V, Z,      | P0~P       | to serve   | 9            |
|                  |          |            |         |            |      |            | indired    | t addr  | ess ap | oplicati | on      |            |            |            |              |
|                  |          |            | 14/11/4 |            | TMD  | OTD        |            |         |        | 0.0      |         | 00         |            |            |              |
| Rai              | nge WX   | WY         | WM      | WS         | TMR  | CTR        | HR         | IR      | OR     | SR       | ROR     | DR         | K          | XR         |              |
| 0.00             | WX0      | WY0        | WM0     | WS0        | T0   | C0         | R0         | R3840   | R3904  | R3968    | R5000   | D0         | 2          | V \ Z      |              |
| Ope-<br>rand     | WX240    | WY240      | WM1896  | WS984      | T255 | C255       | R3839      | R3903   | R3967  | R4167    | R8071   | D4095      | 256        | P0~P9      |              |
| Ma               | 0        | 0          | 0       | 0          | 0    | $\bigcirc$ | 0          | 0       | 0      | 0        | 0       | 0          |            | 0          |              |
| Mb               | 0        | $\bigcirc$ | 0       | $\bigcirc$ | 0    | $\bigcirc$ | 0          | 0       | 0      | 0        | 0       | 0          |            | $\bigcirc$ |              |
| Md               |          | $\bigcirc$ | 0       | 0          | 0    | 0          | 0          |         | 0      | 0*       | 0*      | 0          |            | $\bigcirc$ |              |
| L                |          |            |         |            |      |            | $\bigcirc$ |         |        |          | 0*      | $\bigcirc$ | $\bigcirc$ |            |              |
| Ĺ                |          |            |         |            |      |            |            |         |        |          |         |            |            |            |              |

When operation control "EN" = 1 or "EN ↑" ( important importan





In the program at left, when X0 goes from  $0\rightarrow 1$ , then matrix Ma, comprised by R0 to R4, and matrix Mb, comprised by R10 to R14, will do an AND operation. The results will be stored back in matrix Md, comprised by R20 to R24. The result is shown at right in the diagram below.



| FUN121 P<br>MOR                                                                                                                                  |                                                                                     |                                                                         |                                                                                               |                                                                                             | 1                                                               | MATF                                                                          | rix oi                                                      | र                                                         |                                               |                                                |                                                           |                                                      |                                                 |                                                                                   | 121 <mark>P</mark><br>OR                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------|------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------|
| Operation cont                                                                                                                                   | rol — EN∱                                                                           |                                                                         | -                                                                                             |                                                                                             |                                                                 |                                                                               | Mb:\$<br>Md:\$<br>L :I<br>Ma, N                             | Starting<br>Starting<br>ength                             | g regis<br>g regis<br>of ma<br>may o          | ster of ster of ster of ster of ster of ster   | source<br>destina<br>la, Mb<br>ne with                    | e matrix<br>e matrix<br>ation m<br>and M<br>i V, Z,  | k b<br>natrix<br>d)                             | ) to serv                                                                         | e                                             |
| Ran<br>Ope-<br>rand<br>Ma<br>Mb<br>Md<br>L                                                                                                       | WX0                                                                                 | WY<br>WY0<br>WY240<br>O<br>O                                            | WM<br>WM0<br>WM1896                                                                           | WS<br>WS0<br>WS984<br>O<br>O<br>O                                                           | TMR<br>T0<br> <br>T255<br>0<br>0<br>0<br>0                      | CTR<br>C0<br>C255<br>O<br>O<br>O                                              | HR<br>R0<br>                                                |                                                           |                                               | SR<br>R3968<br>R4167<br>O<br>*                 |                                                           | DR<br>D0<br>                                         | K<br>2<br>256                                   | XR<br>V \ Z<br>P0~P9<br>O<br>O                                                    |                                               |
| <ul> <li>When operation of transition of 2 of the bir will the relength of destination operation if Ma<sub>0</sub> = 0, 0; etc, right</li> </ul> | rom 0 to<br>ts are 1,<br>sult be 0<br>L, Ma an<br>matrix<br>s done by<br>$Mb_0 = 1$ | 1, this<br>then th<br>) opera<br>nd Mb.<br>Md, wl<br>y bits w<br>then N | instruction<br>in result<br>ation bet<br>The reprised<br>hich is<br>vith the s<br>$Md_0 = 1;$ | on will p<br>will be<br>ween 2<br>esult will<br>also the<br>ame bit<br>if Ma <sub>1</sub> : | berforr<br>1, and<br>sour<br>Il ther<br>e san<br>numb<br>= 0, N | m a lo<br>d only<br>rce ma<br>n be<br>ne ler<br>pers).<br>1b <sub>1</sub> = ( | gic OF<br>if both<br>atrixes<br>stored<br>ngth (t<br>For ex | R(If any<br>n are (<br>with a<br>in the<br>he OF<br>ample | /<br>)<br>a<br>?<br>?                         |                                                | Ma<br>·                                                   |                                                      | Mb                                              |                                                                                   | Ad                                            |
| ×<br>•                                                                                                                                           | 0<br>├EN↑-                                                                          | -121P.I<br>Ma :<br>Mb :<br>Md :<br>L :                                  | R 0<br>R 10                                                                                   |                                                                                             |                                                                 | Ma<br>R <sup>2</sup><br>be<br>to<br>aff                                       | a, com<br>10 to F<br>store<br>R14.<br>ter ope               | prised<br>R14, w<br>d into t<br>n this<br>eration         | by Ri<br>ill do a<br>the de<br>examp<br>the s | 0 to R<br>an OR<br>stinatio<br>ble, M<br>ource | 4, and<br>operation<br>on materiation<br>of and<br>matria | I matrix<br>ation. T<br>trix Md<br>Md is t<br>x Mb v | x Mb,<br>The re<br>, comp<br>the sa<br>will rep | 1, then r<br>compris<br>sults wil<br>orised by<br>me matr<br>blaced by<br>the dia | ed by<br>I then<br>y R10<br>rix, so<br>by the |
|                                                                                                                                                  | Ma<br>0 0 0 0 0 0<br>1 1 1 0 0<br>0 0 0 1 1                                         |                                                                         | 000                                                                                           | Mt<br>R10 1<br>R11 0<br>R12 0                                                               | 1 1 1<br>0 0 0                                                  | 0 0 0                                                                         |                                                             | 1 1 1 <sup>-</sup><br>1 1 1 -<br>1 1 1 -                  | Mb₀<br>↓<br>↓<br>↓ 1 1<br>↓ 1 1               | R20<br>R21<br>R22                              | 1 1 1 1                                                   | 1 1 1<br>1 1 1<br>0 0 0 0                            | 1 1 1                                           | 1 1 1 1<br>1 1 1 1<br>1 1 1 1                                                     | Md₀<br>↓<br>1 1 1<br>1 1 1<br>1 1 1           |

After execution

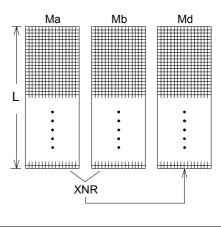
Md<sub>79</sub>

Md<sub>64</sub>

 $Mb_{64}$ 

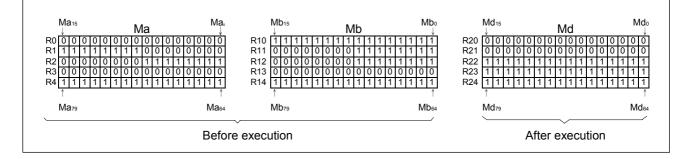
 $Ma_{64}$ 

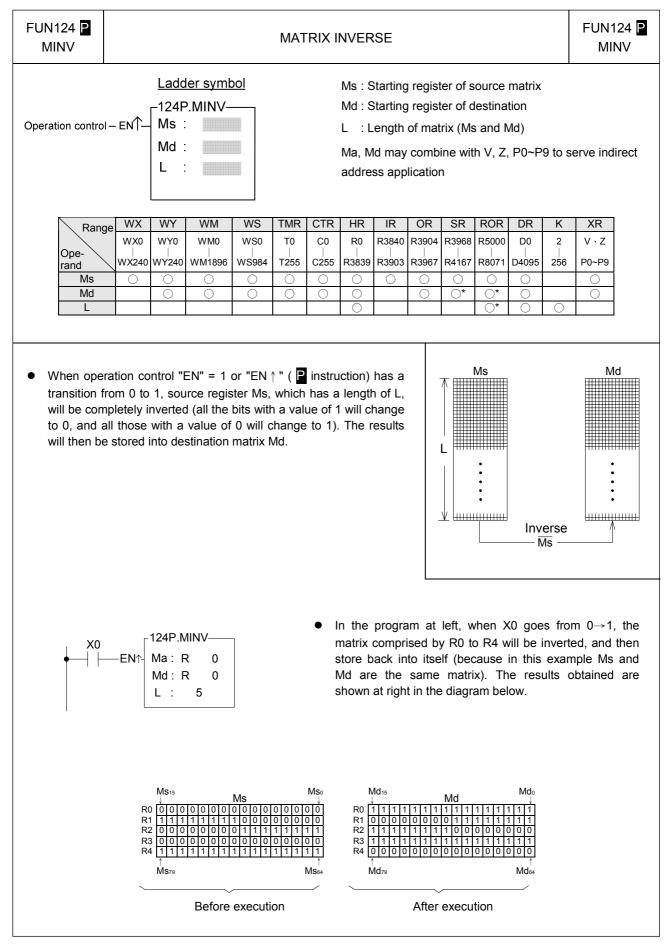
Mb79


Before execution


Ма79

| FUN122 P<br>MXOR                                                                                                                                                       |                                                                                             |                                                                           |                                                                                               | MATF                                                                            | RIX EX                                                    | XCLU                                                   | SIVE                                                         | OR ()                                                   | XOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )                                     |                                         |                             |                               | FUN <sup>.</sup><br>MX                            | 122 <mark>-</mark><br>(OR                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------|-------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------|
| Operation contr                                                                                                                                                        | oI−ENŤ-                                                                                     |                                                                           | :                                                                                             |                                                                                 |                                                           | N<br>N<br>L                                            | la: Sta<br>lb: Sta<br>ld: Sta<br>: Ler<br>la, Mb,<br>ndirect | rting re<br>rting re<br>ogth of<br>Md m                 | egister<br>egister<br>matrix<br>ay cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of sou<br>of des<br>(Ma, N<br>nbine v | rce ma<br>tination<br>Mb anc<br>with V, | atrix b<br>n matri<br>I Md) |                               | serve                                             |                                                                                   |
| Rang<br>Ope-<br>rand<br>Ma<br>Mb<br>Md<br>L                                                                                                                            | WX0                                                                                         | WY<br>WY0<br>WY240<br>O<br>O                                              | WM<br>WM0<br>WM1896                                                                           | WS<br>WS0<br>WS984                                                              | TMR<br>T0<br> <br>T255<br>0<br>0<br>0<br>0                | CTR<br>C0<br>                                          | HR<br>R0<br>                                                 |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SR<br>R3968<br>R4167<br>O<br>*        |                                         | DR<br>D0<br>D4095<br>0<br>0 | K<br>2<br>                    | XR<br>V · Z<br>P0~P9<br>0<br>0                    |                                                                                   |
| <ul> <li>When ope<br/>transition f<br/>the 2 bits a<br/>0)between<br/>result will t<br/>also has a<br/>bits with th<br/>then Md<sub>0</sub> =<br/>XOR reach</li> </ul> | from 0 to<br>are differed<br>2 source<br>then be st<br>length of<br>the same to<br>1; if Ma | 1, this<br>ent, the<br>e matri<br>tored b<br>f L. Fo<br>bit num<br>1 = 1, | instruc<br>en the re<br>ixes with<br>pack into<br>r examp<br>nbers - 1<br>Mb <sub>1</sub> = 1 | tion wil<br>esult wi<br>n a leng<br>the de<br>ble the 2<br>for exai<br>, then l | I perfo<br>II be 1<br>gth of<br>stinati<br>XOR o<br>mple, | orms a<br>, othe<br>L, Ma<br>on ma<br>operat<br>if Ma₀ | logic<br>rwise i<br>and M<br>trix Mc<br>ion is c<br>= 0, M   | XOR (i<br>t will be<br>$Ib. Thel, whichdone byIb_0 = 1$ | if<br>e<br>h<br>y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | Ma                                      |                             | Mb                            |                                                   |                                                                                   |
| ×0<br>∳   -                                                                                                                                                            | EN↑- ↑<br>෦<br>෦                                                                            | 122P.M<br>Ma: R<br>Mb: R<br>Md: R<br>L :                                  | 2 0<br>2 10                                                                                   |                                                                                 |                                                           | •                                                      | perfor<br>by R(<br>The r<br>comp                             | rm a X<br>) to R4<br>esults                             | OR op<br>I, and<br>will the<br>by R20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eratior<br>matrix<br>en be<br>to R24  | n betw<br>Mb, c<br>stored               | een ma<br>compris<br>in des | atrix M<br>sed by<br>stinatio | m 0→1<br>a, comp<br>R10 to<br>n matrix<br>hown at | rised<br>R14.<br>Md,                                                              |
| R2 0 0 0 0 0<br>R3 0 0 0 0 0                                                                                                                                           | 1 1 1 0 0<br>0 0 0 1 1<br>0 0 0 0 0 0                                                       | 0 0 0                                                                     | 0 0 0<br>1 1 1<br>0 0 0                                                                       | R10<br>R11<br>R12<br>R13<br>R14                                                 | 0 0 0 0<br>0 0 0 0<br>0 0 0 0                             | 000                                                    | 0 0 1 1<br>0 0 1 1<br>0 0 0 0                                |                                                         | Mb₀<br>↓<br>1 1 1 1<br>1 1 1 1 | R23                                   |                                         | 0 0 0                       | 0 0 0<br>0 0 0                | 0 0 0 0                                           | Md₀<br>↓<br>1 1 1 1<br>1 1 1 1<br>0 0 0 0<br>0 0 0 0<br>↓<br>0 0 0 0<br>↓<br>Md64 |
|                                                                                                                                                                        |                                                                                             |                                                                           | Before                                                                                        | execut                                                                          | tion                                                      |                                                        |                                                              |                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                         | Afte                        | r exec                        | ution                                             |                                                                                   |


| FUN123 P<br>MXNR    |              |                | Ν              | /ATRI>            | K EX(           | CLUS          | IVE N            | IOR (                     | XNR                   | )                  |                                  |                                  |            | FUN <sup>2</sup><br>MX |
|---------------------|--------------|----------------|----------------|-------------------|-----------------|---------------|------------------|---------------------------|-----------------------|--------------------|----------------------------------|----------------------------------|------------|------------------------|
| Operation cont      | rol — ENŤ-   | 123F           | :              |                   |                 |               | Mb : S<br>Md : S | starting<br>starting      | regist<br>regist      | er of s<br>er of d | ource<br>lestina                 | matrix<br>matrix<br>Ition matrix | b<br>atrix |                        |
|                     |              | L              | :              |                   |                 |               | Ma, M<br>indired |                           | -                     |                    |                                  | V, Z,P                           | 0~P9       | to serve               |
| Ran                 | ne WX        | L              | :<br>          | WS                | TMR             |               | indired          |                           | -                     |                    |                                  | V, Z,P                           | 0~Р9<br>К  | to serve               |
| Ran                 | ge WX<br>WX0 | L              | :              | WS<br>WS0         | TMR<br>T0       |               | indired          | t addr                    | ess ap                | oplicati<br>SR     | on<br>ROR                        | DR                               |            |                        |
| Ran<br>Ope-<br>rand | WX0          | L<br>WY<br>WY0 | :<br>WM        | WS0               |                 | CTR<br>C0     | HR<br>R0         | IR<br>R3840               | ess ap<br>OR<br>R3904 | SR<br>R3968        | on<br>ROR<br>R5000               | DR                               | K<br>2     | XR                     |
| Ope-                | WX0          | L<br>WY<br>WY0 | :<br>WM<br>WM0 | WS0               | то<br>          | CTR<br>C0     | HR<br>R0         | IR<br>R3840               | ess ap<br>OR<br>R3904 | SR<br>R3968        | on<br>ROR<br>R5000               | DR<br>D0                         | K<br>2     | XR<br>V · Z            |
| Ope-<br>rand        | WX0          | L<br>WY<br>WY0 | :<br>WM<br>WM0 | WS0<br> <br>WS984 | T0<br> <br>T255 | CTR<br>C0<br> | HR<br>R0         | IR<br>R3840<br> <br>R3903 | ess ap<br>OR<br>R3904 | SR<br>R3968        | on<br>ROR<br>R5000<br> <br>R8071 | DR<br>D0                         | K<br>2     | XR<br>V · Z            |
| Ope-<br>rand<br>Ma  | WX0          | L<br>WY<br>WY0 | :<br>WM<br>WM0 | WS0<br> <br>WS984 | T0<br> <br>T255 | CTR<br>C0<br> | HR<br>R0         | IR<br>R3840<br> <br>R3903 | ess ap<br>OR<br>R3904 | SR<br>R3968        | on<br>ROR<br>R5000<br> <br>R8071 | DR<br>D0                         | K<br>2     | XR<br>V · Z            |

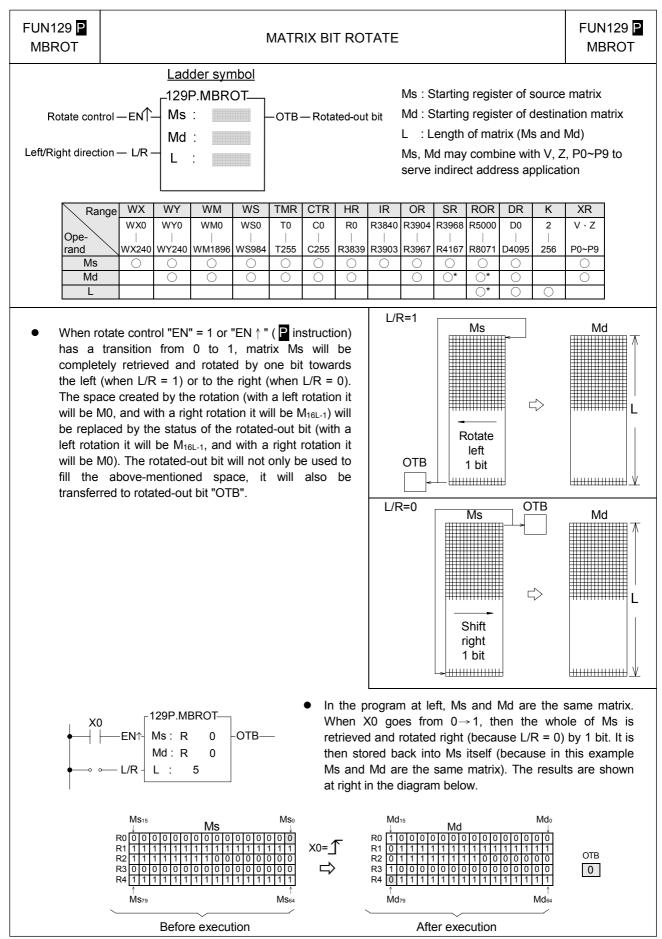

When operation control "EN" = 1 or "EN ↑" ( pinstruction) has a transition from 0 to 1, will perform a logic XNR operation (if the 2 bits are the same, then the result will be 1, otherwise it will be 0)between 2 source matrixes with a length of L, Ma and Mb. The results will then be stored into the destination matrix Md, which also has the same length (the XNR operation is done by bits with the same bit numbers). For example, if Ma<sub>0</sub> = 0, Mb<sub>0</sub> = 1, then Md<sub>0</sub> = 0; Ma<sub>1</sub> = 0, Mb<sub>1</sub> = 0, then Md<sub>1</sub> = 1; etc, right up until XNR reaches Ma<sub>16L-1</sub>.

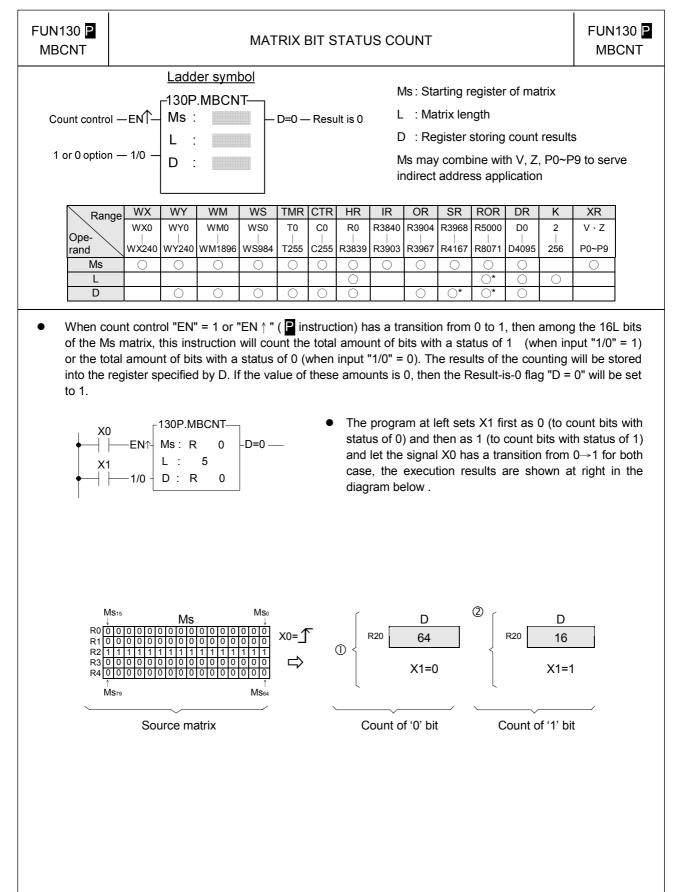


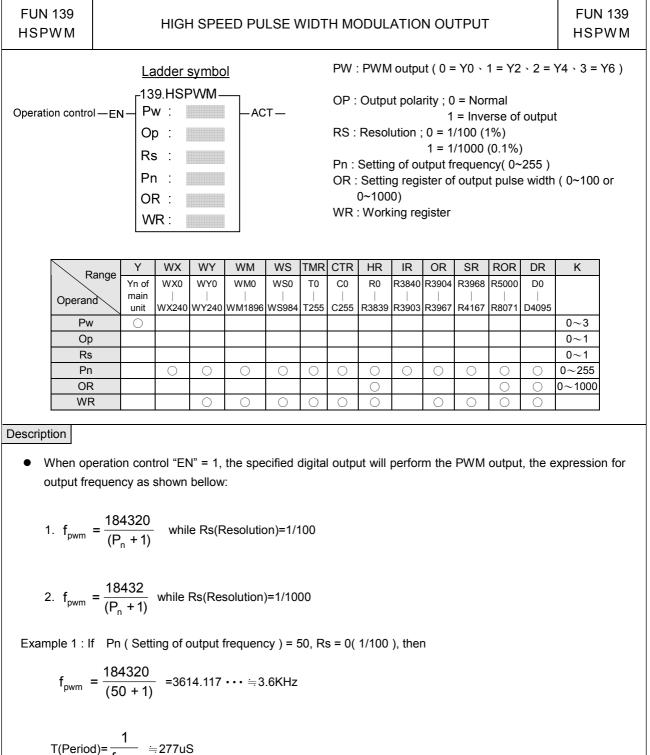


When operation control "EN" = 1 or "EN ↑" ( instruction) goes from 0 to 1, will perform a XNR operation between Ma matrix comprised by R0~R9 and Mb matrix comprised by R10~R19. The results will then be stored into the destination matrix Md comprised by R10~R19. The results are shown at right in the diagram below.







| FUN125 P<br>MCMP MATRIX COMPARE                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                        |                                                                                                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                    | 125 <mark>P</mark><br>:MP                                                                                               |                                                                            |                                                                              |                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                   | 1                                                                                                                                                                         | _adder                                                                                                                                                                               | svmbo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                    |                                                                                                                         |                                                                            |                                                                              |                                                                      |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     |                                                                                                                                                                           |                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                        |                                                                                                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                    |                                                                                                                         |                                                                            |                                                                              |                                                                      |
| Comparison co                                                                                                                                                                                                                                                                                                    | ntrol — E                                                                                                                                                                                                           | N∱–∫N                                                                                                                                                                     | I25Р.М<br>/Iа :<br>/Ib :                                                                                                                                                             | СМР-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -FN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND— F                                                                                                                                                                  | ound ob                                                                                                                                                                                                    | jective                                                                                                                                                                             | Μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b: Star                                                                      | rting re                                                           | egister<br>egister<br>matrix                                                                                            | of mat                                                                     | rix b                                                                        |                                                                      |
| Compare from I                                                                                                                                                                                                                                                                                                   | nead — Fl                                                                                                                                                                                                           | HD− L                                                                                                                                                                     | _ :                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND— C                                                                                                                                                                  | ompare                                                                                                                                                                                                     | to end                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r : Poir                                                                     |                                                                    | -                                                                                                                       |                                                                            |                                                                              |                                                                      |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                     | F                                                                                                                                                                         | Pr :                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                        |                                                                                                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                    | ombine<br>address                                                                                                       |                                                                            | V, Z, PC                                                                     | •~P9 to                                                              |
| Different/Same of                                                                                                                                                                                                                                                                                                | otion — D                                                                                                                                                                                                           | /s –                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RR— F                                                                                                                                                                  | ointer e                                                                                                                                                                                                   | error                                                                                                                                                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |                                                                    |                                                                                                                         | s appi                                                                     | cation                                                                       |                                                                      |
| Rang                                                                                                                                                                                                                                                                                                             | e WX                                                                                                                                                                                                                | WY                                                                                                                                                                        | WM                                                                                                                                                                                   | WS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CTR                                                                                                                                                                    | HR                                                                                                                                                                                                         | IR                                                                                                                                                                                  | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SR                                                                           | ROR                                                                | DR                                                                                                                      | K                                                                          | XR                                                                           |                                                                      |
| Ope-                                                                                                                                                                                                                                                                                                             | WX0                                                                                                                                                                                                                 | WY0                                                                                                                                                                       | WM0                                                                                                                                                                                  | WS0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C0                                                                                                                                                                     | R0                                                                                                                                                                                                         | R3840                                                                                                                                                                               | R3904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R3968                                                                        | R5000                                                              | D0                                                                                                                      | 2                                                                          | V · Z                                                                        |                                                                      |
| rand                                                                                                                                                                                                                                                                                                             | WX240                                                                                                                                                                                                               | WY240                                                                                                                                                                     | WM1896                                                                                                                                                                               | WS984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C255                                                                                                                                                                   | R3839                                                                                                                                                                                                      | R3903                                                                                                                                                                               | R3967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R4167                                                                        | R8071                                                              | D4095                                                                                                                   | 256                                                                        | P0~P9                                                                        |                                                                      |
| Ma                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                   | 0                                                                                                                                                                         | 0                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                      | 0                                                                                                                                                                                                          | 0                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                            | 0                                                                  | 0                                                                                                                       |                                                                            | 0                                                                            |                                                                      |
| Mb<br>L                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                   | 0                                                                                                                                                                         | 0                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                      | 0                                                                                                                                                                                                          | 0                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                            | <br>*                                                              | 0                                                                                                                       | 0                                                                          | 0                                                                            |                                                                      |
| Pr                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     | 0                                                                                                                                                                         | 0                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                      | Ŏ                                                                                                                                                                                                          |                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0*                                                                           | Ŏ*                                                                 | Ŏ                                                                                                                       | Ŭ                                                                          |                                                                              |                                                                      |
| value is less<br>pairs of bits<br>(when D/S :                                                                                                                                                                                                                                                                    | with dif                                                                                                                                                                                                            |                                                                                                                                                                           |                                                                                                                                                                                      | ction w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ill com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | noro o                                                                                                                                                                 |                                                                                                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                              |                                                                    |                                                                                                                         |                                                                            |                                                                              |                                                                      |
| number in the<br>flag "FND" we<br>bits in the me<br>will finish, me<br>compare-to-<br>to 16L-1 and<br>automatically<br>the comparise<br>The range for<br>affect the rese<br>this instruction<br>X0                                                                                                               | ne matrix<br>vill be se<br>natrix (M<br>io matte<br>end flag<br>d the ne<br>y return<br>son sear<br>or the po<br>sult of se<br>on will no                                                                           | x met<br>et to 1.<br>/la <sub>16L-1</sub> ,<br>rr it ha<br>"END"<br>ext tim<br>to the s<br>ch.<br>inter va<br>earch.                                                      | atch four<br>the sea<br>When<br>Mb <sub>16L-1</sub><br>as found<br>" will be<br>e that the<br>starting<br>alue is 0<br>If the Pr<br>arried ou                                        | nd, poir<br>rch con<br>it has s<br>), this e<br>l or not<br>set as<br>his instr<br>point of<br>) to 16L-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S = 1<br>hter Pr<br>dition.<br>earche<br>executi<br>t. If thi<br>1, and<br>ruction<br>the ma<br>-1. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) or th<br>will p<br>The fo<br>d to th<br>on of<br>is hap<br>the Pr<br>is exe<br>atrix (P<br>e Pr va<br>is its ra                                                      | e sam<br>oint to<br>ound o<br>ne final<br>the ins<br>pen th<br>r value<br>ecuted,<br>r = 0) t<br>lue sho<br>ange, t                                                                                        | e value<br>the bi<br>bjective<br>pair c<br>truction<br>en The<br>will se<br>Pr wi<br>o begin<br>puld no<br>hen the                                                                  | e L<br>it L<br>of L<br>e L<br>it L<br>of | er erro                                                                      | or flag '                                                          | Mapr<br>her ins<br>"ERR"                                                                                                | will be                                                                    | ns, as t                                                                     | 1, and                                                               |
| flag "FND" v<br>bits in the n<br>will finish, n<br>compare-to-<br>to 16L-1 an<br>automatically<br>the comparis<br>The range fo<br>affect the res<br>this instruction                                                                                                                                             | ne matrix<br>vill be se<br>natrix (M<br>io matte<br>end flag<br>d the ne<br>y return<br>son sear<br>or the po<br>sult of se<br>on will no                                                                           | x met<br>et to 1.<br>Ma <sub>16L-1</sub> ,<br>r it ha<br>"END"<br>ext tim<br>to the s<br>ch.<br>inter va<br>earch.<br>of be ca<br>P.MCM<br>: R<br>: R                     | atch four<br>the sea<br>When<br>Mb <sub>16L-1</sub><br>as found<br>" will be<br>e that the<br>starting<br>alue is 0<br>If the Pr<br>arried ou<br>P0FN<br>10FN                        | nd, poir<br>rch con<br>it has s<br>), this e<br>l or not<br>set as<br>his instr<br>point of<br>) to 16L-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S = 1<br>hter Pr<br>dition.<br>earche<br>executi<br>t. If thi<br>1, and<br>ruction<br>the ma<br>-1. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) or th<br>will p<br>The fc<br>d to th<br>on of<br>is hap<br>the Pr<br>is exe<br>atrix (P<br>e Pr va<br>ds its ra                                                      | the same<br>point to<br>pound of<br>the final<br>the ins<br>pen the<br>r value<br>ecuted,<br>r = 0 to<br>lue sho<br>ange, to<br>the pro-<br>position<br>r * ), th                                          | e value<br>the bi<br>bjective<br>pair of<br>truction<br>en The<br>will se<br>Pr wi<br>o begin<br>ould no<br>hen the<br>ogram<br>1 great<br>e instr                                  | e L<br>it L<br>of L<br>e L<br>of L<br>e c<br>ot be cl<br>e point<br>at left,<br>ter tha<br>uction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er erro<br>the "F<br>n the p<br>will do                                      | HD" in<br>ointer                                                   | Mapr<br>her ins<br>"ERR"<br>put is (<br>value a<br>arch fo                                                              | tructio<br>will be<br>0, so s<br>at that<br>or bits                        | ns, as t<br>e set to<br>starting<br>time (r<br>with di                       | 1, and<br>from a<br>narked<br>fferent                                |
| flag "FND" v<br>bits in the n<br>will finish, n<br>compare-to-<br>to 16L-1 an<br>automatically<br>the comparis<br>The range for<br>affect the res<br>this instruction<br>X0<br>$\downarrow$ $\downarrow$ $\downarrow$ $E$                                                                                        | ne matri:<br>vill be se<br>natrix (M<br>io matte<br>end flag<br>d the ne<br>y return<br>son sear<br>or the po<br>sult of se<br>on will no<br>1251<br>Mh<br>Mb<br>HD- L                                              | x met<br>et to 1.<br>$Ma_{16L-1}$ ,<br>r it ha<br>"END"<br>ext tim<br>to the s<br>ch.<br>inter va<br>earch.<br>of be ca<br>P.MCM<br>: R<br>: S                            | atch four<br>the seal<br>. When<br>Mb <sub>16L-1</sub><br>is found<br>" will be<br>e that the<br>starting<br>alue is 0<br>If the Pr<br>arried ou<br>P                                | nd, poir<br>rch con<br>it has s<br>), this e<br>d or not<br>set as<br>his instr<br>point of<br>0 to 16L-<br>value e<br>ut.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S = 1<br>hter Pr<br>dition.<br>earche<br>executi<br>t. If thi<br>1, and<br>ruction<br>the ma<br>-1. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) or the<br>will p<br>The fo<br>ed to the<br>on of the<br>is hap<br>the Pr<br>is exe<br>atrix (P<br>e Pr va<br>ds its ra<br>ls its ra<br>ls its ra<br>ls its ra<br>1   | le sam<br>point to<br>pound o<br>poine final<br>the ins<br>pen the<br>r value<br>ecuted,<br>r = 0) t<br>lue sho<br>ange, t<br>the pro-<br>position<br>$\gamma$ *), th<br>atus (b                           | e value<br>the bi<br>bjective<br>pair of<br>truction<br>en The<br>will se<br>Pr wi<br>o begin<br>ould no<br>hen the<br>ogram<br>1 great<br>e instr<br>ecause                        | e L<br>it L<br>it L<br>of L<br>it L<br>it L<br>of L<br>it L<br>of L<br>o | er erro<br>the "F<br>n the p<br>will do<br>= 1). W                           | HD" in<br>ointer<br>a sea                                          | Mapr<br>her ins<br>"ERR"<br>put is (<br>value a<br>arch fo<br>0 has a                                                   | tructio<br>will be<br>0, so s<br>at that<br>or bits<br>a trans             | ns, as t<br>e set to<br>starting<br>time (n                                  | 1, and<br>from a<br>narked<br>fferent<br>om 0→                       |
| flag "FND" v<br>bits in the n<br>will finish, n<br>compare-to-<br>to 16L-1 an<br>automatically<br>the comparis<br>The range for<br>affect the res<br>this instruction<br>X0<br>$\downarrow$ $\downarrow$ $\downarrow$ $E$                                                                                        | ne matri:<br>vill be se<br>natrix (M<br>io matte<br>end flag<br>d the ne<br>y return<br>son sear<br>or the po<br>sult of se<br>on will nc<br>1251<br>Ma<br>Mb<br>HD- L<br>Pr                                        | x met<br>et to 1.<br>$Ma_{16L-1}$ ,<br>r it ha<br>"END"<br>ext tim<br>to the s<br>ch.<br>inter va<br>earch.<br>of be ca<br>P.MCM<br>: R<br>: S                            | atch four<br>the sear<br>. When<br>Mb <sub>16L-1</sub><br>is found<br>" will be<br>e that the<br>starting<br>alue is 0<br>If the Pr<br>arried ou<br>P                                | nd, poir<br>rch con<br>it has s<br>), this e<br>d or not<br>set as<br>his instr<br>point of<br>0 to 16L-<br>value e<br>ut.<br>ND<br>RR<br>$\frac{1}{R10} \frac{1}{00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /S = 1<br>hter Pr<br>dition.<br>earche<br>execution<br>t. If thi<br>1, and<br>-1. The<br>exceed<br>-1. The<br>exceed<br>-1 in the matrix<br>-1 | ) or th<br>will p<br>The fo<br>d to th<br>on of<br>is hap<br>the Pr<br>is exe<br>atrix (P<br>e Pr va<br>ds its ra<br>by<br>sta<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | le sam<br>point to<br>pound o<br>he final<br>the ins<br>pen th<br>r value<br>ecuted,<br>r = 0) t<br>lue sho<br>ange, t<br>the pro-<br>position<br>(''), th<br>atus (b<br>three t<br>elow.                  | e value<br>the bi<br>bjective<br>pair of<br>truction<br>en The<br>will se<br>Pr wi<br>o begin<br>buld no<br>hen the<br>ogram<br>1 great<br>e instr<br>ecause<br>imes, $\frac{1}{1}$ | e $L$<br>it $L$<br>if $L$<br>of $L$<br>if $L$                                                                                                                                                                              | er erro<br>the "F<br>n the p<br>will do<br>= 1). W                           | r flag '<br>HD" in<br>ointer<br>o a sea<br>hen Xi<br>re shor<br>20 | Mapr<br>her ins<br>"ERR"<br>put is (<br>value a<br>arch fo<br>0 has a                                                   | tructio<br>will be<br>0, so s<br>at that<br>or bits<br>a trans             | ns, as te<br>starting<br>time (r<br>with di<br>ition fron<br>the di<br>FND E | 1, and<br>from a<br>narked<br>fferent<br>om 0→                       |
| flag "FND" v<br>bits in the m<br>will finish, m<br>compare-to-<br>to 16L-1 an<br>automatically<br>the comparis<br>The range for<br>affect the res<br>this instruction<br>X0<br>$\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ | The matrix (M<br>will be senatrix (M<br>to mattee<br>end flag<br>d the neighbor<br>y return<br>for the po-<br>sult of secon will no<br>sult of secon will no<br>1251<br>Mb<br>HD- L<br>Pr<br>D/S -<br>Ma *<br>11111 | x met<br>et to 1<br>$Ma_{16L-1}$ ,<br>r it ha<br>"END'<br>ext tim<br>to the s<br>ch.<br>inter va<br>earch.<br>ot be ca<br>P.MCM<br>: R<br>: R<br>: S<br>: R<br>: 5<br>: R | atch four<br>the sear<br>. When<br>Mb <sub>16L-1</sub><br>is found<br>" will be<br>e that the<br>starting p<br>alue is 0<br>If the Pr<br>arried ou<br>P<br>0 -FN<br>10 -EP<br>20 -EP | nd, poir<br>rch con<br>it has s<br>), this e<br>i or not<br>set as<br>his instr<br>point of<br>0 to 16L-<br>value e<br>it.<br>ND<br>RR<br>Pr<br>R10 11<br>R11 0 C<br>R12 11<br>R11 0 C<br>R12 11<br>R13 11<br>R13 11<br>R13 11<br>R13 11<br>R14 | /S = 1<br>hter Pr<br>dition.<br>earche<br>execution<br>t. If thi<br>1, and<br>-1. The<br>exceed<br>-1. The<br>exceed<br>-1 in the matrix<br>-1 | ) or th<br>will p<br>The fo<br>d to th<br>on of<br>is hap<br>the Pr<br>is exe<br>atrix (P<br>e Pr va<br>ds its ra<br>by<br>sta<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | le sam<br>point to<br>pund o<br>pund o<br>ne final<br>the ins<br>pen the<br>r value<br>ecuted,<br>r = 0) t<br>lue sho<br>ange, t<br>the pro-<br>position<br>$\gamma$ *), th<br>atus (b<br>three t<br>elow. | e value<br>the bi<br>bjective<br>pair of<br>truction<br>en The<br>will se<br>Pr wi<br>o begin<br>buld no<br>hen the<br>ogram<br>1 great<br>e instr<br>ecause<br>imes, $\frac{1}{1}$ | e $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er erro<br>the "F<br>n the p<br>will dc<br>= 1). W<br>sults ar<br>① R<br>② R | r flag '<br>HD" in<br>ointer<br>o a sea<br>hen Xi<br>re shor<br>20 | Mapr<br>her ins<br>"ERR"<br>put is (<br>value a<br>arch fo<br>0 has a<br>wn at i<br><u>Pr<br/>39</u><br><u>Pr</u><br>79 | tructio<br>will be<br>0, so s<br>at that<br>or bits<br>a trans<br>right ir | ns, as te set to starting time (r with di ition from the di fill [           | 1, and<br>from a<br>narked<br>fferent<br>om $0 \rightarrow$<br>agram |

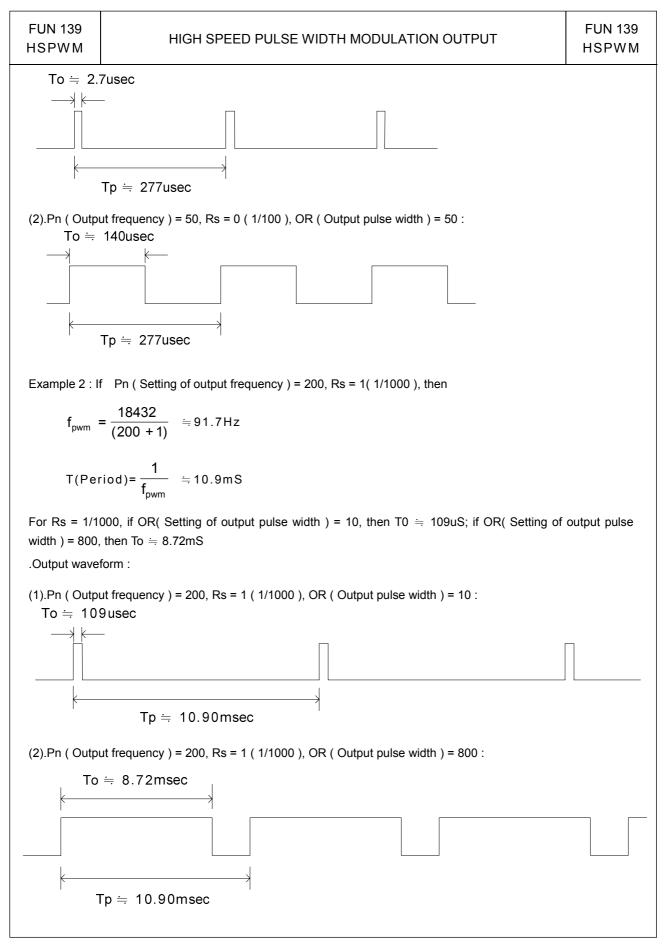

| FUN126 P<br>MBRD                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                                                    |     | MAT      | RIX I               | BIT RI  | EAD |     |                               |                           |                  |        |                                          | 126 <mark>P</mark><br>3RD |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------|-----|----------|---------------------|---------|-----|-----|-------------------------------|---------------------------|------------------|--------|------------------------------------------|---------------------------|
| Readout cont                                                                                                   | rol —EN个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>126</sup>              | <u>der sym</u><br>P.MBRI<br>:                                      |     | - OTB    | — Out               | put bit |     | L : | Startir<br>Matrix<br>Pointe   | length                    | ı                | matrix | (                                        |                           |
| Pointer increme                                                                                                | indirect address application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                                                                    |     |          |                     |         |     |     |                               | )∼P9 to                   | serve            |        |                                          |                           |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                                                    |     |          |                     |         |     |     | -                             | -                         | _                |        |                                          |                           |
| Rai<br>Ope-<br>rand                                                                                            | e- WX0 WY0 WM0 WS0 T0 C0 R0 R3840 R3904 R3968 R5000 D0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                                                                    |     |          |                     |         |     |     | K<br>2<br> <br>256            | XR<br>V · Z<br>P0~P9      |                  |        |                                          |                           |
| Ms<br>L<br>Pr                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                                                    |     |          |                     |         |     |     | 0                             | 0                         |                  |        |                                          |                           |
| transition<br>pointer<br>output<br>check for<br>value w<br>out. Aff<br>reacher<br>be set<br>increas<br>indepen | <ul> <li>When readout control "EN" = 1 or "EN ↑ " ( i instruction) has a transition from 0 to 1, the status of the bit Mspr pointed by pointer Pr within matrix Ms will be read out and appear at the output bit "OTB". Before the readout, this instruction will first check the input -pointer clear "CLR". If "CLR" is 1, then the Pr value will be cleared to 0 first before the readout action is carried out. After the readout is completed, If the Pr value has already reached 16L-1 (the final bit), then the read-to-end flag "END" will be set to 1. If Pr is less than 16L-1, then the status of pointer increment "INC" will be checked. If "INC" is 1, then Pr will be increased by 1. Besides this, pointer clear "CLR" can execute independently, and is not affected by other input.</li> </ul> |                             |                                                                    |     |          |                     |         |     |     |                               | OTB                       |                  |        |                                          |                           |
|                                                                                                                | <ul> <li>The effective range of the pointer is 0 to 16L-1. Beyond this range the pointer error flag "ERR" will be and this instruction will not be carried out.</li> <li>In the program at left, INC = 1, so every time one readout the pointer will be increased by 1. You way each bit in Ms may be read out success shown at left in the diagram below. When XO times from 0→1, the results are shown at right diagram below.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                       |                             |                                                                    |     |          |                     |         |     |     | y 1. Wit<br>cessive<br>n X0 g | h this<br>ly, as<br>oes 3 |                  |        |                                          |                           |
| MS15<br>R0 0 0 0 0<br>R1 0 0 0 0<br>R2 0 0 0 1<br>R3 0 0 1 1<br>R4 10 1 0<br>↑ ↑ MS79 MS                       | 1     1     1     1     1       1     1     0     0     0       0     0     1     1     0       1     0     1     1     0       1     0     1     1     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 0 0<br>0 0 0 0<br>1 1 1 1 | Ms₀<br>0 0 0 1<br>1 1 1 1<br>0 0 0 1<br>0 0 1 1<br>1 0 1 0<br>Ms₀4 | R20 | <b>7</b> | Pr<br>7<br>DTB<br>0 |         |     |     | ① R2<br>② R2<br>③ R2          | 20 7<br>F<br>20 7<br>F    | 9<br>9<br>9<br>9 |        | DTB EN<br>DTB EN<br>O C<br>DTB EN<br>1 1 |                           |
|                                                                                                                | Before execution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                                                    |     |          |                     |         |     |     |                               | Exe                       | cution           | result |                                          |                           |

| FUN127 P<br>MBWR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 | MATRIX BIT WRITE        |                                     |                                               |                                 |                                                                                                   |                                                                                                                                                |                                                                        |                                                                   |                                                                                      |                                                                       |                                                                | FUN127 P<br>MBWR                                                           |                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------|-------------------------------------|-----------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Write cont<br>Write-in<br>Pointer increme<br>Pointer cle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hit — INB — L : Pr : Pr :                                       |                         |                                     | – END — Write to end<br>– ERR — Pointer error |                                 |                                                                                                   | Md : Starting register of matrix<br>L : Matrix length<br>Pr : Pointer register<br>Md may combine with V, Z, PC<br>indirect address application |                                                                        |                                                                   |                                                                                      | √, Z, P0 <sup>,</sup>                                                 | ∼P9 to serve                                                   |                                                                            |                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Doe-                                                            | WY<br>WY0<br>/Y240<br>〇 | WM<br>WM0<br>WM1896<br>O            | WS<br>WS0<br>WS984                            | TMR<br>T0<br> <br>T255<br>0<br> | CTR<br>C0<br><br>C255<br>O                                                                        | HR<br>R0<br>                                                                                                                                   |                                                                        |                                                                   | ROR<br>R5000<br><br>R8071<br><br><br><br><br><br><br><br><br><br>-                   | DR<br>D0<br>                                                          | K<br>2<br>                                                     | XR<br>V \ Z<br>P0~P9                                                       |                                                                                                                                 |
| <ul> <li>When write control "EN" = 1 or "EN ↑ " ( ) instruction) has a transition from 0 to 1, the status of the write-in bit "INB" will be written into the bit Mdpr pointed by pointer Pr within matrix Md. Before the write-in takes place, the status of pointer clear "CLR" will be checked. If "CLR" is 1, then Pr will be cleared to 0 before the write-in action. After the write-in action has been completed, the Pr value will be checked again. If the Pr value has already reached 16L-1 (last bit), then the write-to-end flag will be set to 1. If the Pr value is less than 16L-1 and "INC" is 1, then the pointer will increased by 1. Besides this, pointer clear "CLR" can execute independently, and is not affected by other input.</li> </ul> |                                                                 |                         |                                     |                                               |                                 |                                                                                                   |                                                                                                                                                |                                                                        | Pr<br>OTB                                                         |                                                                                      |                                                                       |                                                                |                                                                            |                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tuction will r<br>127<br>−EN↑ Ms                                | not b<br>P.MB<br>: R    | e carried                           |                                               | . Beyo<br>                      | <ul> <li>In</li> <li>ex</li> <li>box</li> <li>IN</li> <li>pox</li> <li>ca</li> <li>box</li> </ul> | the p<br>kecution<br>elow, v<br>IB (X1<br>pinter<br>ase, a<br>een w                                                                            | rograr<br>on (be<br>when )<br>) will I<br>Pr wil<br>Ithoug<br>ritten i | n at le<br>cause<br>X0 ha<br>be wri<br>ll incre<br>h Pr<br>into M | eft, poi<br>"INC"<br>s a tra<br>tten in<br>eased<br>is poir<br>Id <sub>79</sub> , so | nter wi<br>is 1).<br>ansitior<br>to the<br>by 1<br>nting to<br>o "ENI | ill be i<br>As sh<br>from<br>Mdpr<br>(chan<br>o the<br>D" flag | ncrease<br>own in<br>0→1, t<br>(Md <sub>78</sub> ) p<br>ging to<br>end, it | et to 1, and<br>d each time<br>the diagram<br>he status of<br>position, and<br>79). In this<br>has not yet<br>0. Only the<br>I. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X'<br>Md15<br>R00000<br>R1000<br>R2000<br>R3000<br>R400<br>Md79 |                         | 0 0 0 0 0<br>0 0 0 0 0<br>0 0 0 0 0 | 0 0 0 0<br>0 0 0 0<br>0 0 0 0<br>0 0 0 0      | 0 0 0<br>0 0 0                  | X0=_<br>☐                                                                                         | ſ                                                                                                                                              | R1 0                                                                   | 0 0 0<br>0 0 0<br>0 0 0<br>1 0 0                                  |                                                                                      | 0 0 0 0<br>0 0 0 0<br>0 0 0 0                                         | 0 0 0<br>0 0 0<br>0 0 0                                        | 0 0<br>0 0<br>0 0                                                          |                                                                                                                                 |

| FUN128<br>MBSH    |                                                                                                                        |                                      |               |                    |           | MAT              | RIX E  | BIT SH    | HFT          |                  |                |                |            |                  |         | UN128 <mark>P</mark><br>MBSHF |
|-------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|--------------------|-----------|------------------|--------|-----------|--------------|------------------|----------------|----------------|------------|------------------|---------|-------------------------------|
|                   |                                                                                                                        |                                      | La            | dder syr           | nbol      |                  |        |           |              |                  |                |                |            |                  |         |                               |
|                   |                                                                                                                        |                                      |               | BP.MBS             |           |                  |        |           |              | Ma               |                | rtina ra       | aistor     | of agu           |         | otriv                         |
|                   | Shift con                                                                                                              | trol — EN                            |               |                    |           |                  | 3 — Sh | ift out l | hit          |                  |                | •              | •          | of sou           |         |                               |
|                   |                                                                                                                        |                                      | Mc            |                    |           | 012              |        | int out i | SIL .        | IVIC             | n: Sta<br>matr | -              | egister    | of des           | tinatic | n                             |
|                   | <b></b>                                                                                                                |                                      |               |                    |           |                  |        |           |              |                  |                |                | motriv     |                  | nd Md   | I)                            |
|                   | Fill-in                                                                                                                | bit — INC                            | -  L          | -                  |           |                  |        |           |              |                  |                | -              |            | (Ms a            |         | -                             |
|                   |                                                                                                                        |                                      |               |                    |           |                  |        |           |              |                  |                | •              |            | e with \         |         |                               |
| Left/Rig          | ght direct                                                                                                             | on — CLR — to serve indirect address |               |                    |           |                  |        |           |              |                  | iess af        | plicat         | 1011       |                  |         |                               |
|                   | ĸ                                                                                                                      |                                      |               |                    |           |                  |        |           |              |                  |                |                | _          |                  |         |                               |
|                   | Rar                                                                                                                    | nge WX                               | WY            | WM                 | WS        | TMR              |        | HR        | IR           | OR               | SR             | ROR            |            | K                | XR      | _                             |
|                   | Ope-                                                                                                                   | WX0                                  | WY0           | WM0                | WS0       | то               | C0     | R0        | R3840        | R3904            | R3968          | R5000          | D0         | 2                | V · Z   |                               |
|                   | rand WX240 WY240 WM1896 WS984 T255 C255 R3839 R3903                                                                    |                                      |               |                    |           |                  | R3967  | 0         |              | 0                | 256            | P0~P9          | 9          |                  |         |                               |
|                   | Ms<br>Md                                                                                                               | 0                                    | 0             | 0                  | 0         | 0                | 0      | 0         | 0            | 0                | 0<br>0*        | <br>○*         | $\bigcirc$ |                  | 0       | _                             |
|                   |                                                                                                                        |                                      |               |                    |           |                  |        |           | $\cup$       | 0*               | 0              | 0              |            | _                |         |                               |
|                   |                                                                                                                        |                                      |               |                    |           |                  |        |           |              |                  |                |                |            |                  |         |                               |
| • •               | Nhen st                                                                                                                | lift control                         | "FN" =        | : 1 or "El         | N ^ " / [ | Dinstr           | uction | ) has     | a            |                  |                | Me             |            | INB              |         | Md                            |
|                   | <ul> <li>When shift control "EN" = 1 or "EN ↑ " ( P instruction) has aMsMd</li> </ul>                                  |                                      |               |                    |           |                  |        |           |              |                  |                |                |            |                  |         |                               |
|                   | transition from 0 to 1, source matrix Ms will be retrieved and completely shifted one position to the left (when L/R = |                                      |               |                    |           |                  |        |           |              |                  |                |                |            |                  |         |                               |
|                   |                                                                                                                        | e position                           |               | -                  |           |                  |        |           |              |                  | Ħ              |                |            |                  |         |                               |
|                   |                                                                                                                        | by the shi                           | -             |                    |           |                  |        |           |              |                  |                |                |            | •                |         |                               |
|                   | -                                                                                                                      | t it will be                         |               | -                  | -         |                  |        |           |              |                  | Ħ              | *****          | ****       | $\Box$           |         | ********** L                  |
|                   |                                                                                                                        | . The stat                           |               | -                  |           | -                |        |           |              |                  |                | -<br>Shift     | -          |                  |         |                               |
|                   |                                                                                                                        | e M <sub>16L-1</sub> , at the ou     |               |                    |           |                  |        |           |              |                  |                | left           |            |                  |         |                               |
|                   |                                                                                                                        | natrix will                          | -             |                    |           |                  |        |           | 15           | OTB              |                | 1 bit          |            |                  |         |                               |
|                   |                                                                                                                        |                                      |               |                    |           |                  |        |           |              |                  | <──⊞           |                | ш          |                  | шш      | <u>+++++++++</u>              |
| • T               | The prog                                                                                                               | gram at le                           | eft is a      | n examp            | le whe    | ere Ms           | and    | Md ar     | e            |                  |                |                |            |                  |         |                               |
|                   |                                                                                                                        | e matrix.                            |               | -                  |           |                  |        |           |              |                  |                | Ms             |            | OTB              |         | Md                            |
|                   | -                                                                                                                      | ely retriev                          |               |                    |           |                  |        |           |              |                  |                |                | ⊞>         |                  |         |                               |
|                   |                                                                                                                        | oit. It will tl<br>vn at right       |               |                    |           |                  | nd the | result    | IS           |                  |                |                |            |                  |         |                               |
| d                 |                                                                                                                        | in at right                          |               | ulayrann           | Delow.    |                  |        |           |              |                  |                |                |            |                  |         |                               |
|                   |                                                                                                                        |                                      | -128          | P.MBSHF            |           |                  |        |           |              |                  |                |                |            |                  |         |                               |
|                   |                                                                                                                        |                                      |               |                    |           | В—               |        |           |              |                  | FTF            |                |            | $\leq$           |         | #######E                      |
|                   | Ī                                                                                                                      | ⊣                                    | l∱- Ms∶<br>Md |                    | -01       | D                |        |           |              |                  | -              | Chiff          | -          |                  |         |                               |
|                   |                                                                                                                        | X0<br>⊣                              |               |                    |           |                  |        |           |              |                  |                | Shift<br>right |            |                  |         |                               |
|                   | Ĩ                                                                                                                      |                                      | , c.          | 0                  |           |                  |        |           |              | INB              |                | 1 bit          |            |                  |         |                               |
|                   |                                                                                                                        |                                      |               |                    |           |                  |        |           |              |                  |                |                |            |                  |         |                               |
|                   |                                                                                                                        |                                      |               |                    |           |                  |        |           |              |                  |                |                |            |                  |         |                               |
|                   |                                                                                                                        |                                      |               |                    |           |                  |        |           |              |                  |                |                |            |                  |         |                               |
| Ms15 Ms0 Md15 Md0 |                                                                                                                        |                                      |               |                    |           |                  |        |           |              |                  |                |                |            |                  |         |                               |
|                   | Ms₁₅ Ms Md₁₅ Md<br>↓ Ms ↓ Md ↓<br>₽0[0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0                                             |                                      |               |                    |           |                  |        |           |              |                  |                |                |            |                  |         |                               |
|                   | R1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                |                                      |               |                    |           |                  |        |           |              |                  |                |                |            |                  |         |                               |
|                   |                                                                                                                        | R2 1 1 1<br>R3 0 0 0                 | 0 0 0 0       | 1 1 0 0<br>0 0 0 0 | 0000      | 00               | ⇒      |           | R2 1<br>R3 0 | 1 1 1<br>0 0 0 0 | 1 1 1<br>0 0 0 | 00000          |            | 0 1              |         |                               |
|                   |                                                                                                                        | R4 0 1 1                             | 1 1 1         | 1 1 1 1            | 1 1 1 1   | 11               | ,      |           | R4 1         | 1 1 1            | 1 1 1          | 1 1 1 1        | 1  1  1    | 10               |         |                               |
|                   |                                                                                                                        | MS79                                 |               |                    |           | Ms <sub>64</sub> |        |           | Md           | 79               |                |                |            | Md <sub>64</sub> |         |                               |
|                   | Before execution After execution                                                                                       |                                      |               |                    |           |                  |        |           |              |                  |                |                |            |                  |         |                               |
|                   |                                                                                                                        |                                      | DCIOI         |                    | 011       |                  |        |           |              |                  |                | Junoli         |            |                  |         |                               |
|                   |                                                                                                                        |                                      |               |                    |           |                  |        |           |              |                  |                |                |            |                  |         |                               |
|                   |                                                                                                                        |                                      |               |                    |           |                  |        |           |              |                  |                |                |            |                  |         |                               |








$$f_{pwm}$$

For Rs = 1/100, if OR( Setting of output pulse width ) = 1, then T0  $\approx$  2.7uS; if OR( Setting of output pulse width ) = 50, then To  $\approx$  140uS.

.Output waveform :

(1).Pn (Output frequency) = 50, Rs = 0 (1/100), OR (Output pulse width) = 1:



| FUN140<br>HSPSO |                                                                                                                                                                                                                                       | HIGH SPEED PULSE OUTPUT INSTRUCTION<br>(Brief description on function) |                                 |                                |                                                  |                                                                       |  |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------|--------------------------------|--------------------------------------------------|-----------------------------------------------------------------------|--|--|--|
| Pause           | $\frac{\text{Ladder symbol}}{\text{Execution control} - EN^{+}} = \frac{140.\text{HSPSO}}{\text{Ps}} = \frac{140.\text{HSPSO}}{\text{Ps}} = ACT$ $SR : \text{SR} : \text{SR} : \text{SR} = ERR$ $Abort - ABT - \text{VR} : \text{DN}$ |                                                                        |                                 |                                | 0:Y<br>1:Y<br>2:Y<br>3:Y<br>: Positi<br>: Starti | 0 & Y1<br>2 & Y3<br>4 & Y5<br>6 & Y7<br>oning  <br>ng wor<br>7 regist |  |  |  |
| Command desc    |                                                                                                                                                                                                                                       |                                                                        | HR<br>R0<br> <br>R3839<br> <br> | DR<br>D0<br><br>D4095<br><br>O | ROR<br>R5000<br>                                 | K<br>2<br>256<br>0~3                                                  |  |  |  |

- The NC positioning program of HSPSO (FUN140) instruction is a program written and edited with text. The
  executing unit of program is divided by step (which includes output frequency, traveling distance, and
  transferring conditions). For one FUN140 instruction, can program 250 steps of positioning points at the most.
  Each step of positioning program requires 9 registers. For detailed application, please refer to chapter 13 "the
  NC positioning control of FBs-PLC".
- The benefits of storing the positioning program in the register is that, while in application which use the MMI (man machine interface) as the operation console can save the positioning programs to MMI. Whenever the change of the positioning programs is requested, the download of positioning program can be simply done by a series of write register commands.
- The NC positioning of this instruction doesn't provide the linear interpolation function.
- When execution control "EN"=1, if Ps0~3 is not controlled by other FUN140 instruction (the status of Ps0=M1992, Ps1=M1993, Ps2=M1994, and Ps3=M1995 is ON respectively), it will start to execute from the next step of positioning point (when goes to the last step, it will be restarted from the first step); if Ps0~3 is controlled by other FUN140 instruction (the status of Ps0=M1992, Ps1=M1993, Ps2=M1994, and Ps3=M1995 are OFF), this instruction will wait and acquires the control right of output point immediately right after other FUN140 release the output.
- When execution control input "EN" =0, it stops the pulse output immediately.
- When output pause "PAU" =1 and execution control was 1, it will pause the pulse output. When output pause "PAU" =0 and execution control is still 1, it will continue the unfinished pulse output.
- When output abort "ABT"=1, it will halt and stop pulse output immediately. (When the execution control input "EN" becomes 1 next time, it will restart from the first step of positioning point to execute.)
- While send the output pulse, the output indication "ACT" is ON.
- When there is an execution error, the output indication "ERR" will be ON. (The error code is stored in the error code register.)
- When the execution of each step of positioning program is completed, the output indication "DN" will be ON.
- The working mode of Pulse Output must be configured (without setting, Y0 $\sim$ Y7 will be treated as normal output) to any one of following modes, before the HSPSO instruction can be worked.

U/D Mode: Y0 (Y2, Y4, Y6), as up pulse. Y1 (Y3, Y5, Y7), as down pulse.
K/R Mode: Y0 (Y2, Y4, Y6), as the pulse out.. Y1 (Y3, Y5, Y7), as the direction.
A/B Mode: Y0 (Y2, Y4, Y6), as A phase pulse. Y1 (Y3, Y5, Y7), as B phase pulse.
The output polarity for Pulse Output can select to be Normally ON or Normally OFF.

• The working mode of Pulse Output can be configured by WINPROLADDER in "Output Setup" setting page.

| FUN141<br>MPARA | NC POSITIONING PARAMETER VALUE S<br>(Brief description on function)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SETTING                                                                          | FUN141<br>MPARA |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------|
| Execution cont  | rol - EN - Ps : SR : SR : SR : Starting registions parameters to $Range HR DR ROR K R0 D0 R5000 2 Print R3839 D4095 R8071 256 Ps 0~3 SR 0 0 0 0 0 0~3 SR 0 0 0 0 0~3 SR 0 0 0 0~0 0~3 SR 0 0 0 0~0 0~3 SR 0 0 0 0~0 0~0 0~0 0~0 0~0 0~0~0~0~0~0~$ | out (0~3) selection<br>ter for parameter table; it<br>tally, and occupy 24 regis |                 |
| Operation desc  | riptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                 |

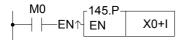
- It is not necessary to use this instruction. if the system default for parameter values is matching what user demanded, then this instruction is not needed. However, if it needs to change the parameter value dynamically, this instruction is required.
- This instruction incorporates with FUN140 for positioning control purpose.
- Whether the execution control input "EN" = 0 or 1, this instruction will be performed.
- When there are any errors in parameter value, the output indication "ERR" will be ON. (The error code is stored in the error code register.)
- For detailed functional description and usage, please refer to chapter 13 "The NC positioning control of FBs-PLC" for explanation.

| FUN142 P<br>PSOFF | STOP THE HSPSO PULSE OUTP<br>(Brief description on function) | FUN142 P<br>PSOFF        |       |
|-------------------|--------------------------------------------------------------|--------------------------|-------|
| Execution control | Ladder symbol     Ps: 0~3     Enforce the Pulse              | Output PSOn (n= Ps) to s | stop. |
| Command desc      | riptions                                                     |                          |       |

- When execution control "EN" =1 or "EN ↑" ( P instruction) changes from 0→1, this instruction will enforce the assigned number set of HSPSO (High Speed Pulse Output) to stop pulse output.
- While in the application for mechanical original point reset, as soon as reach the original point can use this instruction to stop the pulse output immediately, so as to make the original point stop at the same position every time when performing mechanical original point resetting.
- For detailed functional description and usage, please refer to chapter 13 "The NC positioning control of FBs-PLC" for explanation.

| Ladder symbol       Ps : 0~3; it converts the number of the pulse position to be the mm (Deg, Inch, PS) that has same unit as the set value, so as to make current position displayed.         D :       D :         D :       D :         D :       D :         D :       D :         D :       D :         D :       D :         D :       Register that stores the current position after conversion. It uses 2 registers, e.g. if D = D10, which means D10 is Low Word and D11 is High Word.         Image:       Image:         Range:       Image:         Ps :       D :         D :       D :         Ps :       D :         D :       D :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FUN143 P<br>PSCNV |                 | CONVERT THE CURRENT PULSE VALUE TO DISPLAY VALUE<br>(mm, Deg, Inch, PS) (Brief description on function) |    |                                       |                                               |                                          |                                                                                                          |                                           |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|---------------------------------------------------------------------------------------------------------|----|---------------------------------------|-----------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|
| R0         D0         R5000         2           Image: Point of the state of the stat | Execution contr   | ol — ENÎ — PS : | •                                                                                                       |    | the mr<br>value,<br>Registe<br>conver | n (Deg,<br>so as to<br>er that s<br>rsion. It | Inch, F<br>o make<br>stores th<br>uses 2 | PS) that has same unicurrent position displate<br>the current position after<br>registers, e.g. if D = D | it as the set<br>iyed.<br>er<br>10, which |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                 | Ope-<br>rand<br>Ps                                                                                      | R0 | D0                                    | R5000<br> <br>R8071                           | 2<br> <br>256                            |                                                                                                          |                                           |  |  |

- When execution control "En" =1 or "EN ↑ "( instruction) changes from 0→1, this instruction will convert the assigned current pulse position (PS) to be the mm (or Deg, Inch, or PS) that has same unit as the set value, so as to make current position displaying.
- Only when the FUN140 instruction is executed, then it can get the correct conversion value by executing this instruction.
- For detailed functional description and usage, please refer to chapter 13 "The NC positioning control of FBs-PLC" for explanation.

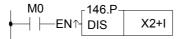

| FUN145 <mark>P</mark><br>EN | ENABLE               | CONTROL          | CONTROL OF THE INTERRUPT AND PERIPHERAL                   |           |  |  |  |  |  |
|-----------------------------|----------------------|------------------|-----------------------------------------------------------|-----------|--|--|--|--|--|
|                             | Ladd                 | <u>er symbol</u> |                                                           |           |  |  |  |  |  |
| Enable control-             | _145P.–<br>– EN∱– EN | LBL              | LBL : External input or peripheral label name th enabled. | nat to be |  |  |  |  |  |

- When enable control "EN" =1 or "EN ↑" ( instruction) changes from 0→1, it allows the external input or peripheral interrupt action which is assigned by LBL.
- The enabled interrupt label name is as follows:(Please refer the section 10.3 for details)

| LBL name | Description                          | LBL name | Description                   | LBL name | Description                    |
|----------|--------------------------------------|----------|-------------------------------|----------|--------------------------------|
| HSTAI    | HSTA High speed<br>counter interrupt | X4+I     | X4 positive edge<br>interrupt | X10+I    | X10 positive edge<br>interrupt |
| HSC0I    | HSC0 High speed<br>counter interrupt | X4–I     | X5 negative edge<br>interrupt | X10-I    | X10 negative edge<br>interrupt |
| HSC1I    | HSC1 High speed<br>counter interrupt | X5+I     | X5 positive edge<br>interrupt | X11+I    | X11 positive edge<br>interrupt |
| HSC2I    | HSC2 High speed<br>counter interrupt | X5–I     | X5 negative edge<br>interrupt | X11–I    | X11 negative edge<br>interrupt |
| HSC3I    | HSC3 High speed<br>counter interrupt | X6+I     | X6 positive edge<br>interrupt | X12+I    | X12 positive edge<br>interrupt |
| X0+I     | X0 positive edge<br>interrupt        | X6-I     | X6 negative edge<br>interrupt | X12–I    | X12 negative edge<br>interrupt |
| X0-I     | X0 negative edge<br>interrupt        | X7+I     | X7 positive edge<br>interrupt | X13+I    | X13 positive edge<br>interrupt |
| X1+I     | X1 positive edge<br>interrupt        | X7–I     | X7 negative edge<br>interrupt | X13–I    | X13 negative edge<br>interrupt |
| X1–I     | X1 negative edge<br>interrupt        | X8+I     | X8 positive edge<br>interrupt | X14+I    | X14 positive edge<br>interrupt |
| X2+I     | X2 positive edge<br>interrupt        | X8-I     | X8 negative edge<br>interrupt | X14–I    | X14 negative edge<br>interrupt |
| X2–I     | X2 negative edge<br>interrupt        | X9+I     | X9 positive edge<br>interrupt | X15+I    | X15 positive edge<br>interrupt |
| X3+I     | X3 positive edge<br>interrupt        | X9-I     | X9 negative edge<br>interrupt | X15–I    | X15 negative edge<br>interrupt |
| X3–I     | X3 negative edge<br>interrupt        |          |                               |          |                                |

 In practical application, some interrupt signals should not be allowed to work at sometimes, however, it should be allowed to work at some other times. Employing FUN146 (DIS) and FUN145 (EN) instructions could attain the above mentioned demand.

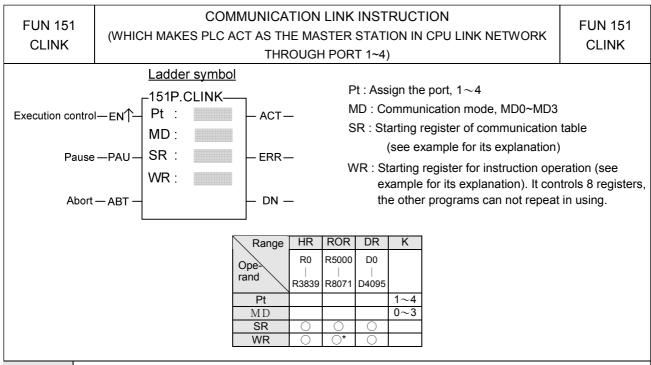
Program example




 When M0 changes from 0→1, it allows X0 to send interrupt when X0 changes from 0→1. CPU can rapidly process the interrupt service program of X0+I.

| UN146 P<br>DIS  | DISABLE CONTROL OF THE INTERRUPT AND PERIPHERAL FUN146<br>DIS                   |                     |                                       |               |                           |              |  |  |  |  |
|-----------------|---------------------------------------------------------------------------------|---------------------|---------------------------------------|---------------|---------------------------|--------------|--|--|--|--|
| Disable control | Ladder sy<br>– en↑– DIS                                                         | <u>rmbol</u><br>LBL | LBL : Interrupt label in be disabled. | tended to dis | able or periphe           | eral name to |  |  |  |  |
| peripherial     | hibit control "EN" =1 o<br>operation designated by<br>pt label name is as follo | y LBL.              | instruction) changes                  | from 0→1,     | it disable the            | interrupt or |  |  |  |  |
| LBL name        | e Description                                                                   | LBL name            | Description                           | LBL name      | Descripti                 | on           |  |  |  |  |
| HSTAI           | HSTA High speed<br>counter interrupt                                            | X4+I                | X4 positive edge<br>interrupt         | X10+I         | X10 positive interrupt    |              |  |  |  |  |
| HSC0I           | HSC0 High speed<br>counter interrupt                                            | X4–I                | X5 negative edge<br>interrupt         | X10-I         | X10 negative<br>interrupt | edge         |  |  |  |  |
| HSC1I           | HSC1 High speed<br>counter interrupt                                            | X5+I                | X5 positive edge<br>interrupt         | X11+I         | X11 positive<br>interrupt | edge         |  |  |  |  |
| HSC2I           | HSC2 High speed<br>counter interrupt                                            | X5–I                | X5 negative edge<br>interrupt         | X11–I         | X11 negative<br>interrupt | e edge       |  |  |  |  |
| HSC3I           | HSC3 High speed<br>counter interrupt                                            | X6+I                | X6 positive edge<br>interrupt         | X12+I         | X12 positive<br>interrupt | edge         |  |  |  |  |
| X0+I            | X0 positive edge<br>interrupt                                                   | X6-I                | X6 negative edge<br>interrupt         | X12–I         | X12 negative<br>interrupt | edge         |  |  |  |  |
| X0-I            | X0 negative edge<br>interrupt                                                   | X7+I                | X7 positive edge<br>interrupt         | X13+I         | X13 positive<br>interrupt | edge         |  |  |  |  |
| X1+I            | X1 positive edge<br>interrupt                                                   | X7–I                | X7 negative edge<br>interrupt         | X13–I         | X13 negative<br>interrupt | e edge       |  |  |  |  |
| X1–I            | X1 negative edge<br>interrupt                                                   | X8+I                | X8 positive edge<br>interrupt         | X14+I         | X14 positive<br>interrupt | edge         |  |  |  |  |
| X2+I            | X2 positive edge<br>interrupt                                                   | X8-I                | X8 negative edge<br>interrupt         | X14–I         | X14 negative<br>interrupt | e edge       |  |  |  |  |
| X2–I            | X2 negative edge<br>interrupt                                                   | X9+I                | X9 positive edge<br>interrupt         | X15+I         | X15 positive<br>interrupt | edge         |  |  |  |  |
| X3+I            | X3 positive edge<br>interrupt                                                   | X9-I                | X9 negative edge<br>interrupt         | X15–I         | X15 negative<br>interrupt | e edge       |  |  |  |  |
| X3–I            | X3 negative edge<br>interrupt                                                   |                     |                                       |               |                           |              |  |  |  |  |

• In practical application, some interrupt signals should not be allowed to work at certain situation. To achive this, this instruction may be used to disable the interrupt signal.


Program example



• When M0 changes from 0→1, it prohibits X2 from sending interrupt when X2 changes from 0→1.

| FUN150<br>M-BUS | MODBUS MASTER INSTRUCTION<br>(WHICH MAKES PLC AS THE MODBUS MASTER THROUGH F        | FUN150<br>PORT 1~4) M-BUS |
|-----------------|-------------------------------------------------------------------------------------|---------------------------|
|                 | −EN↑     Pt     :     _ACT                                                          | -                         |
| Description     | Range       HR       ROR       DR       K         Ope       R0       R5000       D0 |                           |

- Description
  - 1. FUN150 (M-BUS) instruction makes PLC act as Modbus master through Port 1~4, thus it is very easy to communicate with the intelligent peripheral with Modbus protocol.
  - 2. The master PLC may connect with 247 slave stations through the RS-485 interface.
  - 3. Only the master PLC needs to use M-BUS instruction.
  - 4. It employs the program coding method or table filling method to plan for the data flow controls; i.e. from which one of the slave station to get which type of data and save them to the master PLC, or from the master PLC to write which type of data to the assigned slave station. It needs only seven registries to make definition; every seven registers define one packet of data transaction.
  - 5. When execution control <sup>SEN</sup>↑ " changes from 0→1 and both inputs Pause "PAU" and Abort "ABT" are 0, and if Port 1/2/3/4 hasn't been controlled by other communication instructions [i.e. M1960 (Port1) / M1962 (Port2) / M1936 (Port3) / M1938 (Port4) = 1], this instruction will control the Port 1/2/3/4 immediately and set the M1960/M1962/M1936/M1938 to be 0 (which means it is being occupied), then going on a packet of data transaction immediately. If Port 1/2/3/4 has been controlled (M1960/M1962/M1936/M1938 = 0), then this instruction will enter into the standby status until the controlling communication instruction completes its transaction or pause/abort its operation to release the control right (M1960/M1962/M1936/M1938 =1), and then this instruction will become enactive, set M1960/M1962/M1936/M1938 to be 0, and going on the data transaction immediately.
  - 6. While in transaction processing, if operation control "ABT" becomes 1, this instruction will abort this transaction immediately and release the control right (M1960/M1962/M1936/M1938 = 1). Next time, when this instruction takes over the transmission right again, it will restart from the first packet of data transaction.
  - 7. While "A/R" =0 , Modbus RTU protocol ; "A/R" =1 , Modbus ASCII protocol  $\circ$
  - 8. While it is in the data transaction, the output indication "ACT" will be ON.
  - 9. If there is error occurred when it finishes a packet of data transaction, the output indication "DN" & "ERR" will be ON.
  - 10. If there is no error occurred when it finishes a packet of data transaction, the output indication "DN" will be ON.



#### Description

• This instruction provides 4 instruction modes MD0 $\sim$  MD3. Of which, three instruction modes MD0 $\sim$  MD2, are "regular link network", and the MD3 is the "high speed link network". The following are the function description of respective modes. For the details, please refer to section 12.1.2 for explanation.

• MD0 : Master station mode for FATEK CPU LINK.

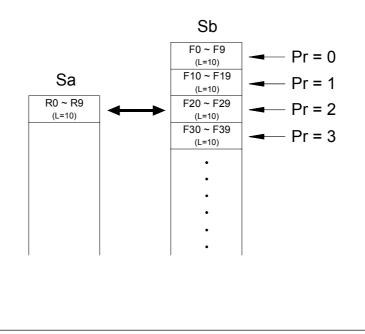
For any PLC, whose ladder program contains the FUN151:MD0 instruction, will become master station of FATEK CPU LINK network. The master station PLC will base on the communication program stored in data registers in which the target station, data type, data length, etc, were specified to read or write slave station via "FATEK FB-PLC Communication Protocol" command. With this approach up to 254 PLC stations can share the data each other

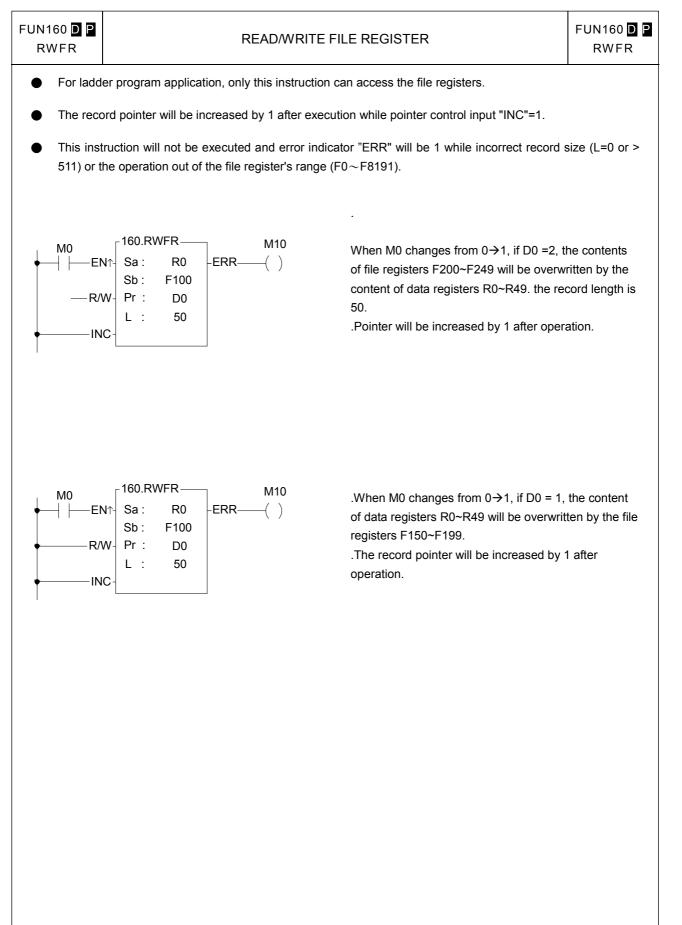
• MD1 : Active ASCII data transmission mode.

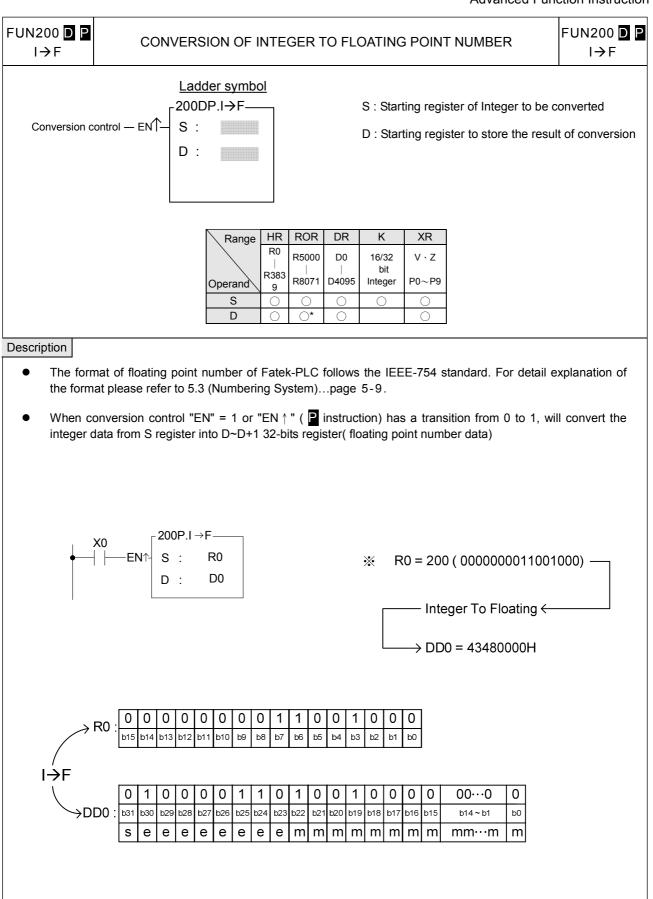
With this mode, the FUN151 instruction will parse the communication program stored in data registers and base on the parsing result send the data from port2 to ASCII peripherals (such as computer, other brand PLC, inverter, moving sign, etc, this kind of device can command by ASCII message). The operation can set to be (1) transmit only, which ignores the response from peripherals, (2) transmit and then to receive the response from peripherals. When operate with mode (2) then the user must base on the communication protocol of peripheral to parsing and prepare the response message by writing the ladder instructions.

• MD2 : Passive ASCII data receiving mode.

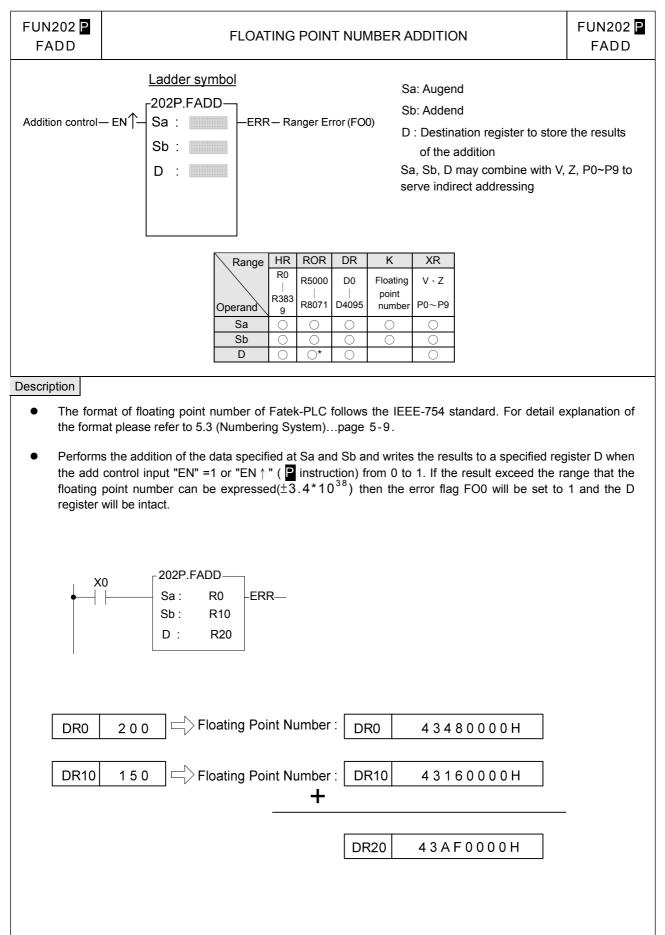
With this mode, the FUN151 will first wait to receive ASCII messages sent by external ASCII peripherals (such as computer, other brand PLC, card reader, bar code reader, electronic weight, etc. this kind of device can send ASCII message). Upon receiving the message, the user can base on the communication protocol of peripheral to parsing and react accordingly. The operation can set to (1) receive only without responding, or (2) receive then responding. For operation mode (2) the user can use the table driver method to write a communication program and after received a message this instruction can base on this communication program automatically reply the message to peripheral.

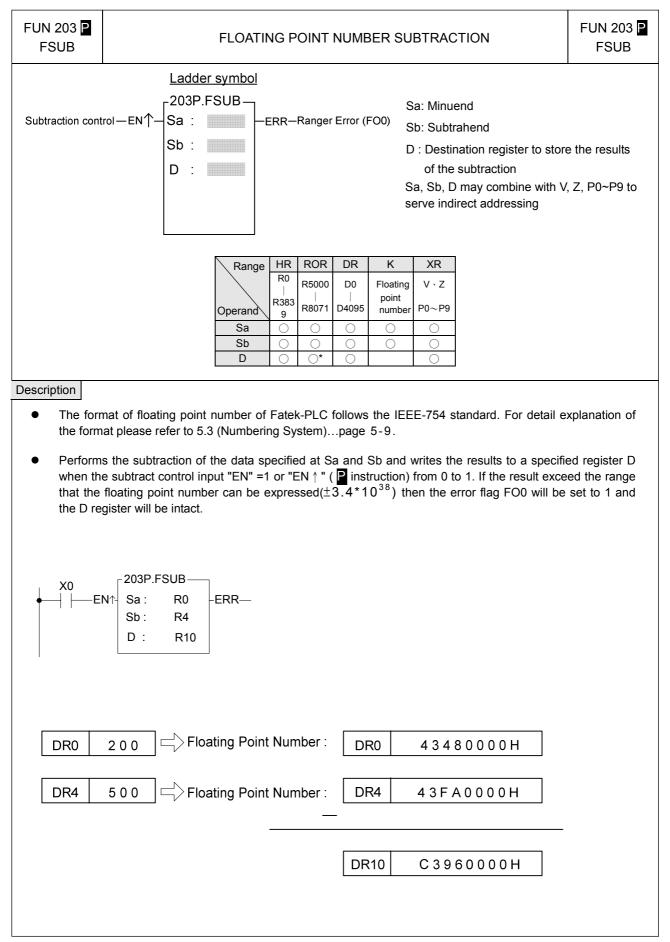

• MD3 : Master station mode of FATEK high speed CPU LINK.

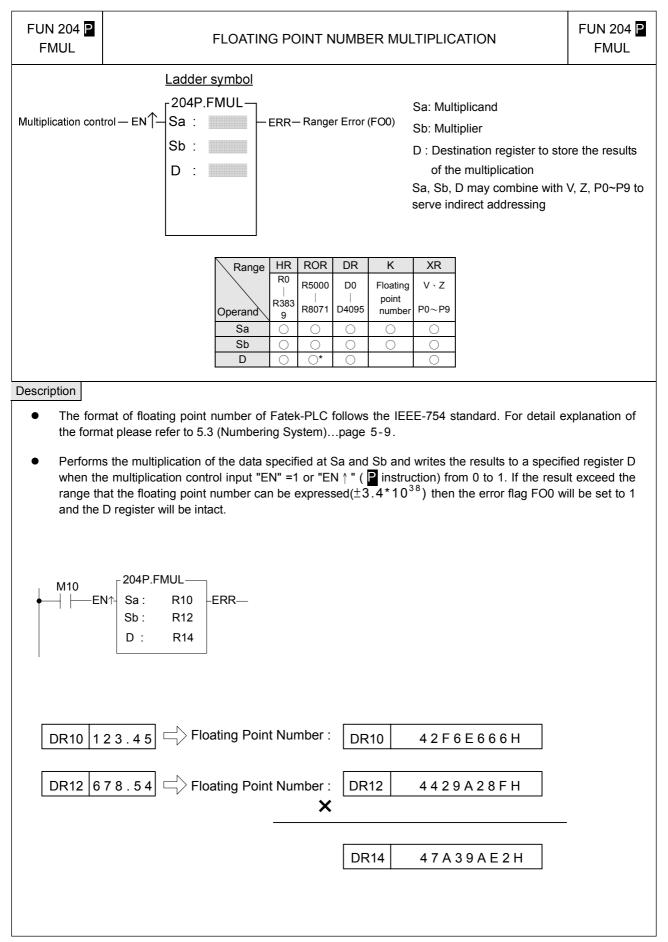

The most distinguished difference between this mode and MD0 is that the communication response of MD3 is much faster than MD0. With The introduction of MD3 mode CPU LINK, The FATEK PLC can easily to implement the application of distributed control and real time data monitoring.

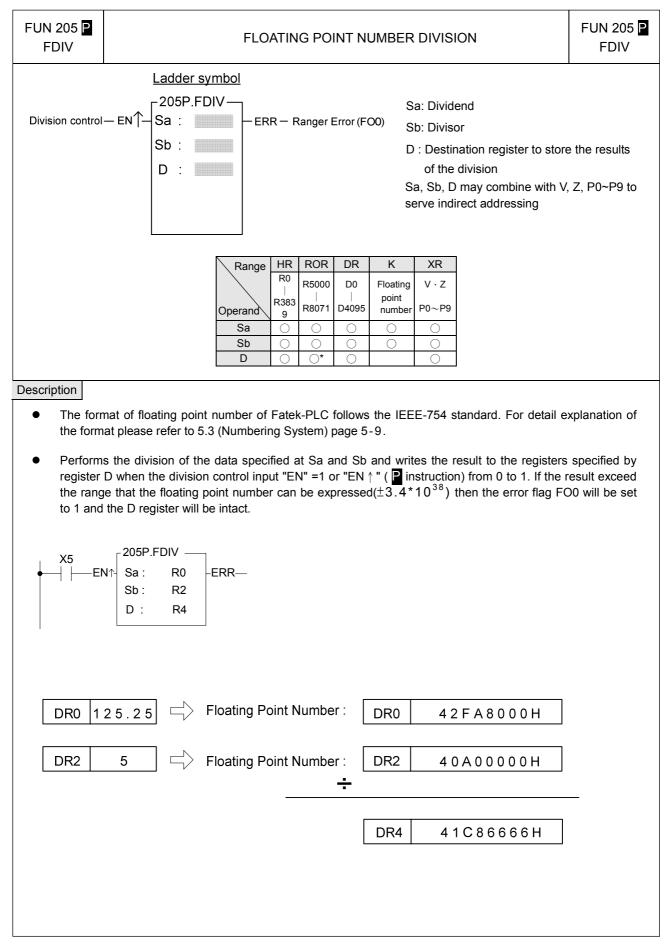

| FUN160 D P<br>RWFR                              | READ/WRITE FILE REGISTER |                                     |                        |                   |                 |                 |                      |                |                             |                              |                                          | FUN160 D<br>RWFR                |                                  |                |                                   |
|-------------------------------------------------|--------------------------|-------------------------------------|------------------------|-------------------|-----------------|-----------------|----------------------|----------------|-----------------------------|------------------------------|------------------------------------------|---------------------------------|----------------------------------|----------------|-----------------------------------|
| Operation control—<br>Read/Write—<br>Increment— | - R/W-                   | - 160I<br>- Sa<br>- Sb<br>- Pr<br>L |                        |                   | -er             | :R— F           | Range                | Error          | S<br>P<br>L<br>S            | b: Star<br>r : Rec<br>: Quar | ting ac<br>cord po<br>ntity of<br>and ca | ldress (<br>inter re<br>registe | of file r<br>egister<br>r to for |                | r<br>ord, 1∼511<br>I∼P9 for index |
| Ν                                               | WX                       | WY                                  | WM                     | WS                | TMR             | CTR             | HR                   | IR             | OR                          | SR                           | ROR                                      | DR                              | К                                | XR             | FR                                |
|                                                 |                          |                                     |                        |                   |                 |                 |                      |                |                             |                              |                                          |                                 |                                  |                |                                   |
| Range<br>Operand                                | <br> ///Y2               | WY0<br> <br>WY240                   | WM0<br> <br>WM18<br>96 | WS0<br> <br>WS984 | T0<br> <br>T255 | C0<br> <br>C255 | R0<br> <br>R383<br>9 | 0<br> <br>R390 | R390<br>4<br> <br>R396<br>7 |                              | R5000<br> <br>R8071                      | D0<br> <br>D4095                |                                  | V ∙ Z<br>P0~P9 | F0<br> <br>F8191                  |
|                                                 | WX2                      |                                     | <br>WM18               |                   |                 |                 | <br>R383             | 0<br>          | 4<br> <br>R396              |                              |                                          |                                 |                                  |                |                                   |
| Operand                                         | <br>WX2<br>40            | WY240                               | WM18<br>96             | WS984             | T255            | <br>C255        | <br>R383<br>9        | 0<br> <br>R390 | 4<br> <br>R396              | <br>R4167                    | <br>R8071                                | <br>D4095                       |                                  | P0~P9          |                                   |
| Operand<br>Sa                                   | <br>WX2<br>40            | WY240                               | WM18<br>96             | WS984             | T255            | <br>C255        | <br>R383<br>9        | 0<br> <br>R390 | 4<br> <br>R396              | <br>R4167                    | <br>R8071                                | <br>D4095                       |                                  | P0~P9          | F8191                             |

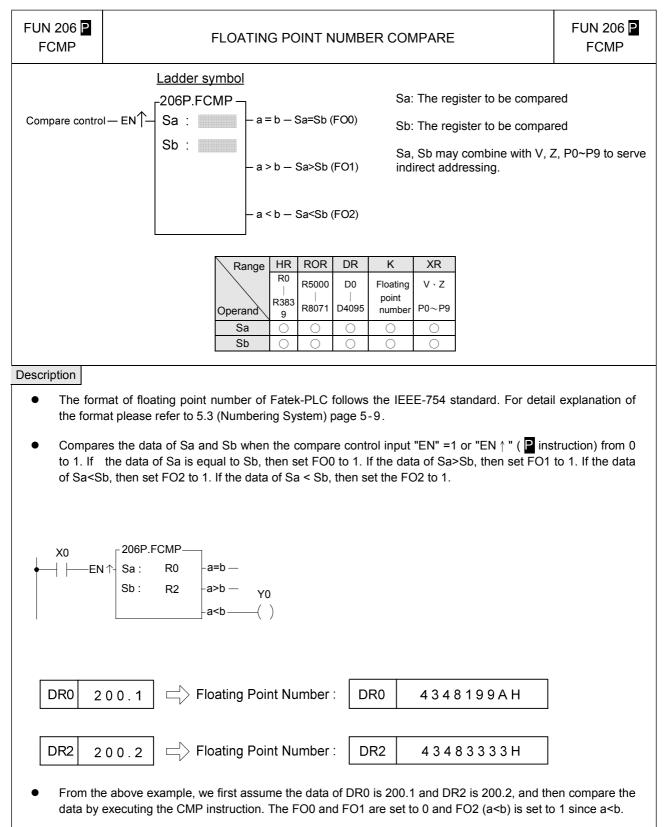
#### Description


When operation control "EN"=1 or "EN ↑ "( is instruction) changes from 0→1, it will perform the read ("R/W"=1) or write ("R/W"=0) file register operation. While reading, the content of data registers starting from Sa will be overwritten by the content of file registers addressed by the base file register Sb and record pointer Pr; while writing, the content of file registers addressed by the base file register Sb and record pointer Pr will be overwritten by the content of data registers starting from Sa; L is the operation quantity or record size. The access of file register adopts the concept of RECORD data structure to implement. For example, Sa=R0, Sb=F0, L=10, the read/write details shown as below

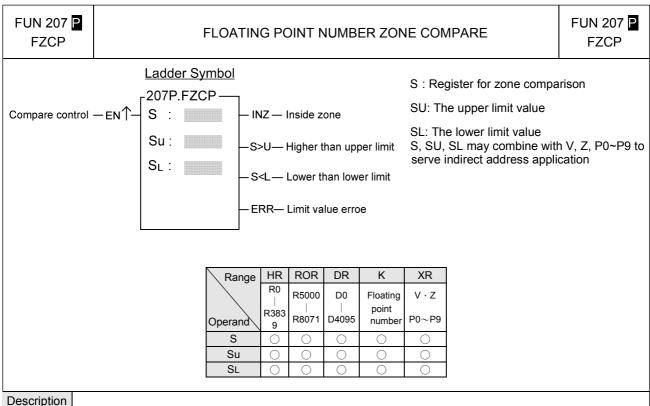


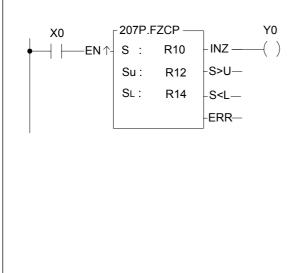


| FUN201 D P<br>F→I CONVERSION OF FLOATING POINT NUMBER TO INTEGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FUN201 <b>D P</b><br>F→I                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| $\begin{array}{c c} \underline{Ladder \ symbol} \\ \hline \\ Conversion \ control - ENT \\ \hline \\ D \ : \\ \hline \\ D \ : \\ \hline \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |
| Range         HR         ROR         DR         K         XR           R0         R5000         D0         16 bit         V \ Z           Operand         9         R8071         D4095         32 bit         P0~P9           S         O         O         O         O         O           D         O*         O         O         O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                |
| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                |
| <ul> <li>The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail ex<br/>the format please refer to 5.3 (Numbering System)page 5-9.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | xplanation of                                                                                  |
| <ul> <li>When conversion control "EN" = 1 or "EN ↑" (  instruction) has a transition from 0 to 1, wil floating point data from S~S+1 32bits register into D register( integer data ).</li> <li>If the value exceeds the valid range of destination, then do not carry out this instruction, range-error flag "ERR" as 1 and the D register will be intact.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                |
| $\begin{array}{cccc} & & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & $ | Е666Н —                                                                                        |
| DR20: b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b<br>s e e e e e e e e m m m m m m m m m m m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D     0     1     1     0       94     b3     b2     b1     b0       m     m     m     m     m |
| $F \rightarrow I$ $\downarrow \downarrow$ D10: $0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                |





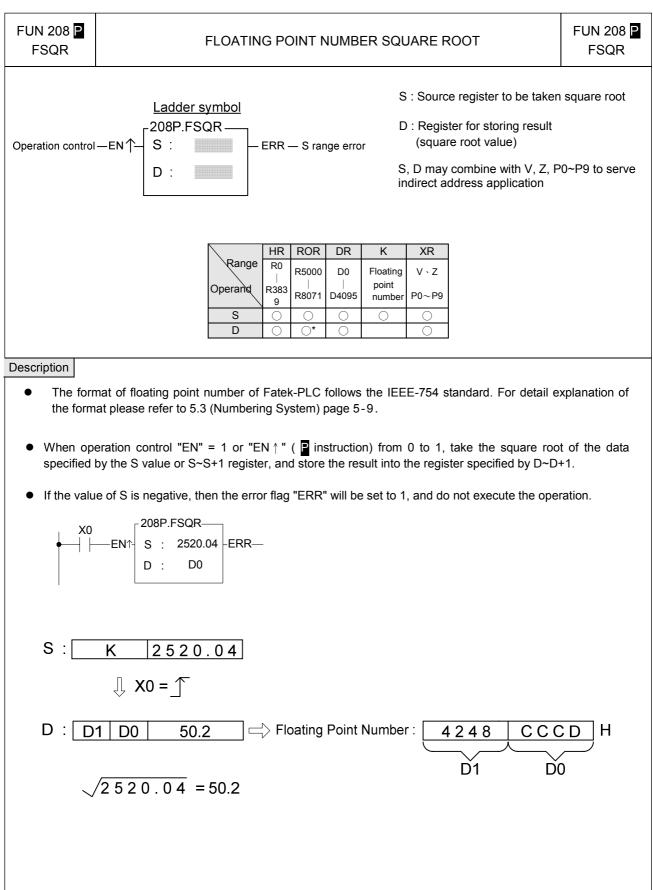


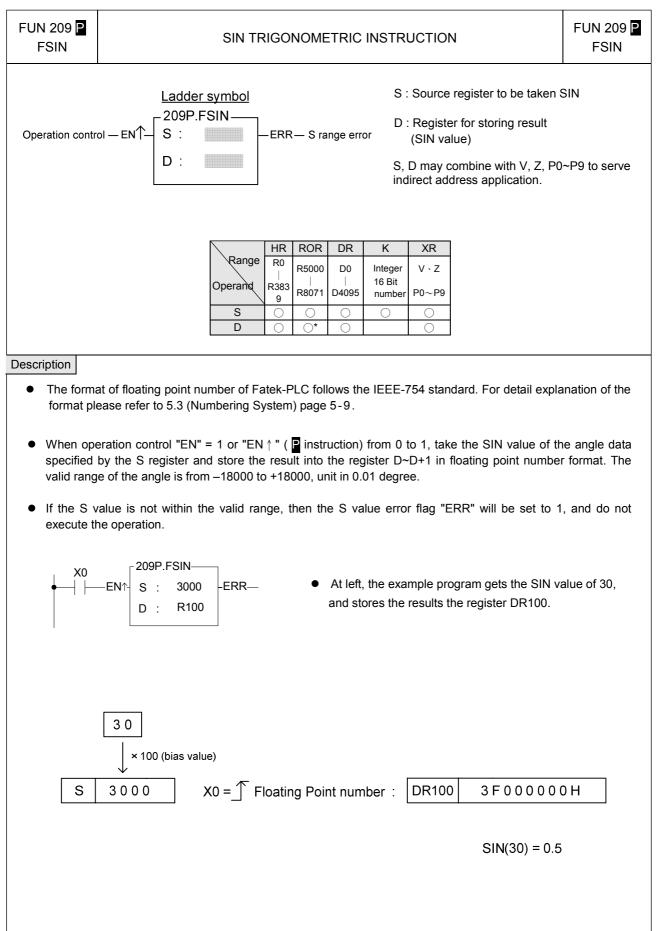


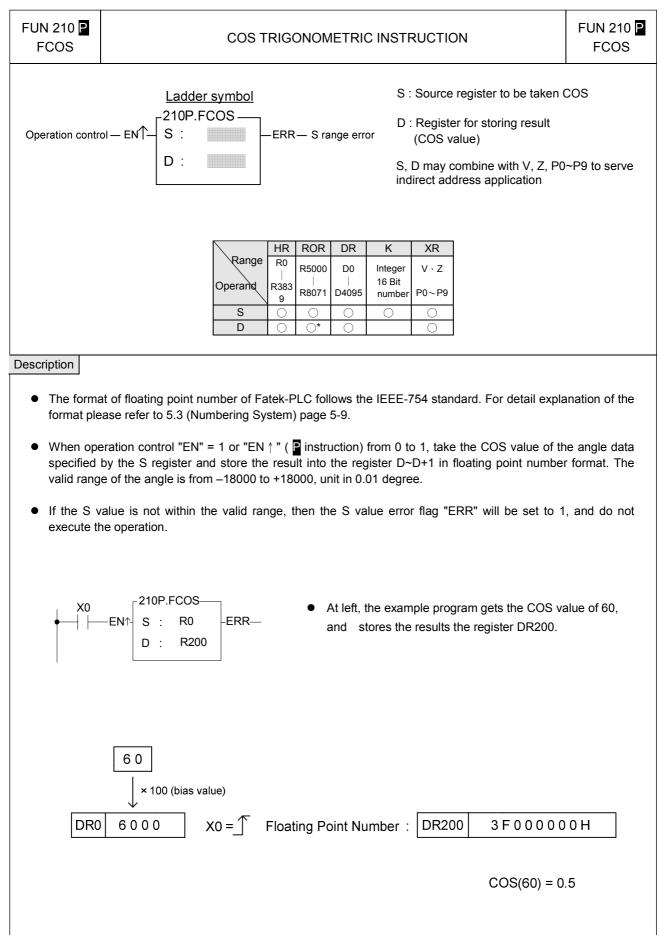



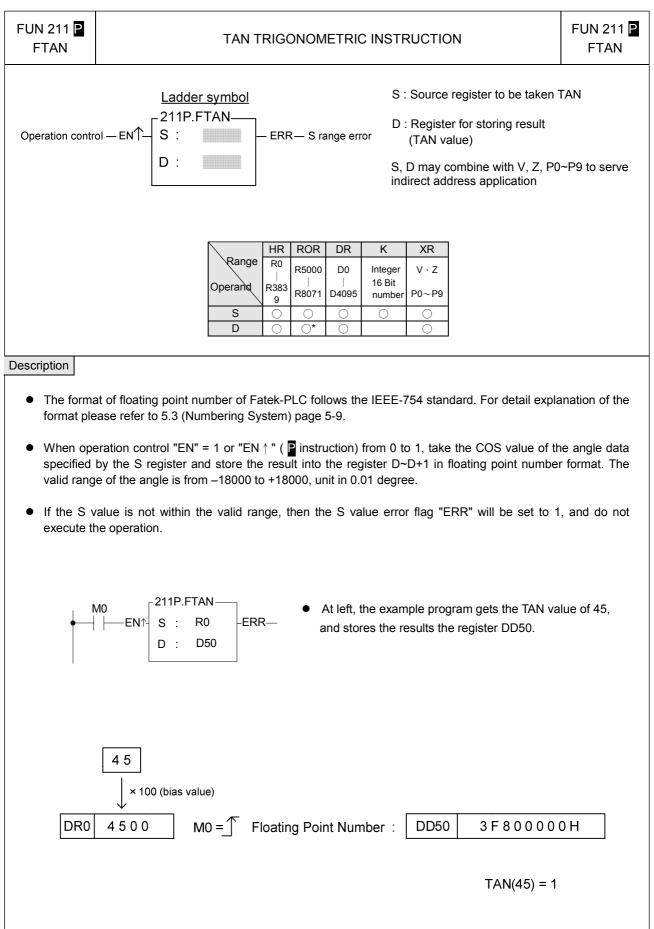

• If you want to have the compound results, such as  $\geq \cdot \leq \cdot < \rangle$  etc., please send =  $\cdot <$  and > results to relay first and then combine the result from the relays.

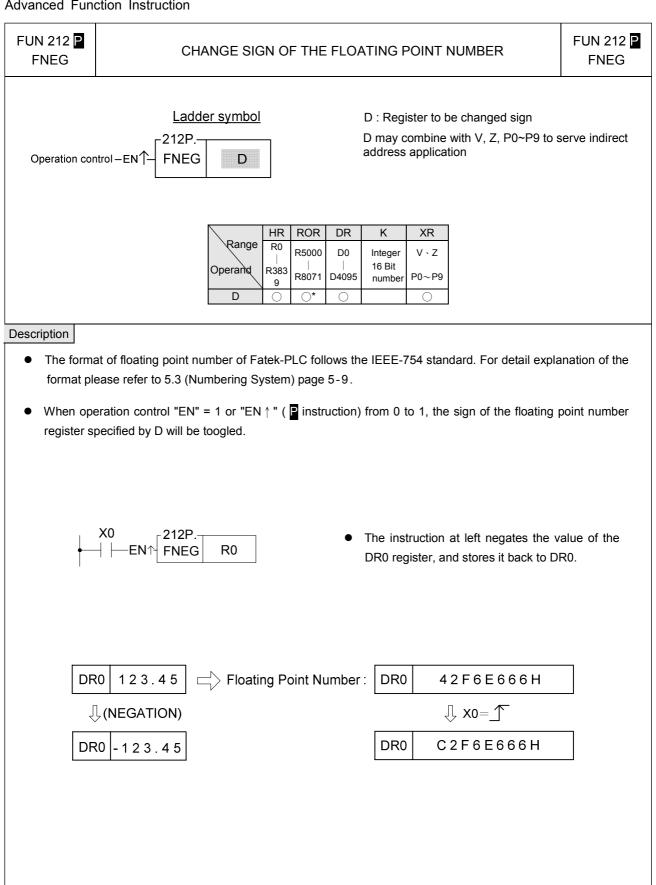



### Description


- The format of floating point number of Fatek-PLC follows the IEEE-754 standard. For detail explanation of the format please refer to 5.3 (Numbering System) page 5-9.
- When compare control "EN" = 1 or "EN ↑ " ( Instruction) changes from 0 to 1, compares S with upper limit SU and lower limit SL. If S is between the upper limit and the lower limit (S<sub>L</sub>≦S≦S<sub>U</sub>), then set the inside zone flag "INZ" to 1. If the value of S is greater than the upper limit S<sub>U</sub>, then set the higher than upper limit flag "S>U" to 1. If the value of S is smaller then the lower limit S<sub>L</sub>, then set the lower than lower limit flag "S<L" as 1.</li>
- The upper limit S<sub>U</sub> should be greater than the lower limit S<sub>L</sub>. If S<sub>U</sub><S<sub>L</sub>, then the limit value error flag "ERR" will set to 1, and this instruction will not carry out.





- The instruction at left compares the value of DR10 with the upper and lower limit zones formed by DR12 and DR14. If the values of DR10~DR14 are as shown in the diagram at bottom left, then the result can then be obtained as at the right of this diagram.
- If want to get the status of out side the zone, then OUT NOT Y0 may be used, or an OR operation between the two outputs S>U and S<L may be carried out, and move the result to Y0.


| FUN 207 P<br>FZCP | FLOATING POINT NUMBER ZONE COMPARE                                                                | FUN 207 P<br>FZCP   |
|-------------------|---------------------------------------------------------------------------------------------------|---------------------|
|                   | 2000.2                                                                                            | Jpper limit value ) |
|                   | 1000.1  Floating Point Number : DR14  447A0666H (L                                                | .ower limit value ) |
|                   | X0= $\int \rightarrow$ FLOATING ZONE COMPARE → Y0 = $\boxed{1}$<br>$\neg$<br>Results of execution |                     |
|                   |                                                                                                   |                     |
|                   |                                                                                                   |                     |
|                   |                                                                                                   |                     |
|                   |                                                                                                   |                     |
|                   |                                                                                                   |                     |
|                   |                                                                                                   |                     |

